A Framework for Unsupervised Profiling of Malaria Vectors' Insecticide Resistance Using Machine Learning Technique

被引:0
|
作者
Kuderha, Ashuza [1 ,2 ,3 ,4 ,10 ]
Adingo, Wisdom [2 ,3 ,5 ]
Chikere, Bruno [2 ,6 ]
Kulimushi, Mugisho [7 ,8 ]
Jules, Kala [9 ]
机构
[1] Univ Catholique Bukavu, Fac Sci, Dept Sci Informat, Bukavu, DEM REP CONGO
[2] Covenant Univ, Covenant Appl Informat & Commun Africa Ctr Excelle, Ota, Nigeria
[3] Covenant Univ, Coll Sci & Technol, Dept Comp & Informat Sci, Ota, Nigeria
[4] Inst Super Dev Rural Bukavu, Dept Planificat Reg, Bukavu, DEM REP CONGO
[5] Kwame Nkrumah Univ Sci & Technol KNUST, Dept Biochem & Biotechnol, Kumasi, Ghana
[6] Covenant Univ, Coll Sci & Technol, Dept Biochem, Ota, Nigeria
[7] Univ Catholique Bukavu, Ctr Rech Environm & Georessources, Bukavu, DEM REP CONGO
[8] Univ Catholique Bukavu, Fac Sci, Dept Sci Environm, Bukavu, DEM REP CONGO
[9] Int Univ Grand Bassam, Sch STEM, Dept Data Sci, Grand Bassam, Cote Ivoire
[10] Univ Catholique Bukavu, Fac Sci, Dept Sci Informat, 02 Ave Mission, Bukavu 642, DEM REP CONGO
关键词
malaria; insecticide resistance; profiling; machine learning;
D O I
10.1089/vbz.2023.0112
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background: There is a need to identify different insecticide resistance profiles that represent circumscription-encapsulation of knowledge about malaria vectors' insecticide resistance to increase our understanding of malaria vectors' insecticide resistance dynamics.Methods: Data used in this study are part of the aggregation of over 20,000 mosquito collections done between 1957 and 2018. We applied two data preprocessing steps. We developed three clustering machine learning models based on the K-means algorithm with three selected datasets. The elbow method was used to fine-tune the hyperparameters. We used the silhouette score to assess the clustering results produced by each of the three models. The proposed framework incorporates continuous learning, allowing the machine learning models to learn continuously.Results: For the first model, the optimal number of clusters (profiles) k was 17. For the second model, we found four profiles. For the third model, the optimal number of profiles was 7.Discussion: We found that the insecticide resistance profiles have dynamic resistance levels with respect to the insecticide component, species component, location component, and time component. This profiling task provided knowledge about the evolution of malaria vectors' insecticide resistance in the African continent by encapsulating the information on the complex interaction between the different dimensions of malaria vectors' insecticide resistance into different profiles. Policy makers can use the knowledge about the different profiles found from the analysis of available insecticide resistance monitoring data (through profiling) by using our proposed approach to set up malaria vector control strategies that consider the locations, species present in those locations, and potentially efficient insecticides.
引用
收藏
页码:364 / 371
页数:8
相关论文
共 50 条
  • [1] Insecticide resistance and management of malaria vectors
    Paine, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [2] THE FORGOTTEN VECTORS IN INSECTICIDE RESISTANCE MONITORING OF MALARIA VECTORS
    Athinya, Duncan K.
    Hadi, Melinda P.
    Omondi, Seline A.
    Ochomo, Eric O.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2019, 101 : 442 - 442
  • [3] Insecticide resistance in malaria vectors in Kumasi, Ghana
    Sandra Baffour-Awuah
    Augustina A. Annan
    Oumou Maiga-Ascofare
    Soma Diloma Dieudonné
    Priscilla Adjei-Kusi
    Ellis Owusu-Dabo
    Kwasi Obiri-Danso
    Parasites & Vectors, 9
  • [4] Evolution of insecticide resistance diagnostics in malaria vectors
    Weetman, David
    Donnelly, Martin James
    TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, 2015, 109 (05) : 291 - 293
  • [5] Insecticide resistance in malaria vectors in Kumasi, Ghana
    Baffour-Awuah, Sandra
    Annan, Augustina A.
    Maiga-Ascofare, Oumou
    Dieudonne, Soma Diloma
    Adjei-Kusi, Priscilla
    Owusu-Dabo, Ellis
    Obiri-Danso, Kwasi
    PARASITES & VECTORS, 2016, 9 : 1 - 8
  • [6] Monitoring and molecular profiling of contemporary insecticide resistance status of malaria vectors in Guinea-Bissau
    Silva, Ronise
    Mavridis, Konstantinos
    Vontas, John
    Rodrigues, Amabelia
    Osorio, Hugo Costa
    ACTA TROPICA, 2020, 206
  • [7] The insecticide resistance status of malaria vectors in the Mekong region
    Van Bortel, Wim
    Trung, Ho Dinh
    Thuan, Le Khanh
    Sochantha, Tho
    Socheat, Duong
    Sumrandee, Chalao
    Baimai, Visut
    Keokenchanh, Kalouna
    Samlane, Phompida
    Roelants, Patricia
    Denis, Leen
    Verhaeghen, Katrijn
    Obsomer, Valerie
    Coosemans, Marc
    MALARIA JOURNAL, 2008, 7 (1)
  • [8] Why Is Insecticide Resistance Rare in Malaria Vectors in Thailand?
    Chareonviriyaphap, Theeraphap
    Kim, Daeyun
    Nobleza, John Aerol
    Lhaosudto, Suthat
    Charoenwiriyapap, Chauwat
    ENTOMOLOGICAL RESEARCH, 2025, 55 (03)
  • [9] The insecticide resistance status of malaria vectors in the Mekong region
    Wim Van Bortel
    Ho Dinh Trung
    Le Khanh Thuan
    Tho Sochantha
    Duong Socheat
    Chalao Sumrandee
    Visut Baimai
    Kalouna Keokenchanh
    Phompida Samlane
    Patricia Roelants
    Leen Denis
    Katrijn Verhaeghen
    Valerie Obsomer
    Marc Coosemans
    Malaria Journal, 7
  • [10] Insecticide resistance status of malaria vectors in Lao PDR
    Marcombe, Sebastien
    Bobichon, Julie
    Somphong, Boutsady
    Phommavan, Nothasin
    Maithaviphet, Santi
    Nambanya, Simone
    Corbel, Vincent
    Brey, Paul T.
    PLOS ONE, 2017, 12 (04):