3D urban object change detection from aerial and terrestrial point clouds: A review

被引:17
|
作者
Xiao, Wen [1 ,2 ]
Cao, Hui [1 ]
Tang, Miao [1 ]
Zhang, Zhenchao [3 ]
Chen, Nengcheng [2 ]
机构
[1] China Univ Geosci, Sch Geog & Informat Engn, Wuhan 430074, Peoples R China
[2] China Univ Geosci, Natl Engn Res Ctr Geog Informat Syst, Wuhan 430074, Peoples R China
[3] Informat Engn Univ, Inst Geospatial Informat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Point cloud; Lidar; SfM photogrammetry; Building change; Street scene; Urban tree; Construction site; BUILDING CHANGE DETECTION; LIDAR DATA; DEFORMATION ANALYSIS; FOREST STRUCTURE; STEREO IMAGERY; AIRBORNE; NETWORK; TIME; PHOTOGRAMMETRY; CLASSIFICATION;
D O I
10.1016/j.jag.2023.103258
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Change detection has been increasingly studied in remote and close-range sensing in the last decades, driven by its importance in environment monitoring and database updating. Due to the development of sensing technologies, data acquisition has become more accessible and affordable and thus more data from various sensing platforms have become available. Thanks to structure-from-motion photogrammetry and lidar technologies, 3D change detection from point cloud data is drawing considerable attention in recent years. Motivated by the lack of a comprehensive review of 3D change detection in the urban environment, this paper reviews the latest developments in urban object change detection using point cloud data. In particular, four types of objects, namely building, street scene, urban tree, and construction site, are analysed in-depth. The use of different data sources for each object-of-interest and the open-source data with change labels are summarised. Then the change detection methods are thoroughly reviewed at pixel, point, voxel, segment and object levels, whose pros and cons are analysed in detail. Moreover, the challenges and opportunities brought by point cloud data and new methods, such as Siamese network deep learning, are discussed for future considerations.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Change detection of urban objects using 3D point clouds: A review
    Stilla, Uwe
    Xu, Yusheng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 197 : 228 - 255
  • [2] Weakly Supervised 3D Object Detection from Point Clouds
    Qin, Zengyi
    Wang, Jinglu
    Lu, Yan
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 4144 - 4152
  • [3] 3D building change detection by combining LiDAR point clouds and aerial imagery
    Peng, Daifeng
    Zhang, Yongjun
    Xiong, Xiaodong
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2015, 40 (04): : 462 - 468
  • [4] Change Detection in Urban Point Clouds: An Experimental Comparison with Simulated 3D Datasets
    de Gelis, Iris
    Lefevre, Sebastien
    Corpetti, Thomas
    REMOTE SENSING, 2021, 13 (13)
  • [5] Aerial 3D Building Detection and Modeling From Airborne LiDAR Point Clouds
    Sun, Shaohui
    Salvaggio, Carl
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) : 1440 - 1449
  • [6] Exploiting Label Uncertainty for Enhanced 3D Object Detection From Point Clouds
    Sun, Yang
    Lu, Bin
    Liu, Yonghuai
    Yang, Zhenyu
    Behera, Ardhendu
    Song, Ran
    Yuan, Hejin
    Jiang, Haiyan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (06) : 6074 - 6089
  • [7] LSNet: Learned Sampling Network for 3D Object Detection from Point Clouds
    Wang, Mingming
    Chen, Qingkui
    Fu, Zhibing
    REMOTE SENSING, 2022, 14 (07)
  • [8] BADet: Boundary-Aware 3D Object Detection from Point Clouds
    Qian, Rui
    Lai, Xin
    Li, Xirong
    PATTERN RECOGNITION, 2022, 125
  • [9] TANet: Robust 3D Object Detection from Point Clouds with Triple Attention
    Liu, Zhe
    Zhao, Xin
    Huang, Tengteng
    Hu, Ruolan
    Zhou, Yu
    Bai, Xiang
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11677 - 11684
  • [10] GRNet: Geometric relation network for 3D object detection from point clouds
    Li, Ying
    Ma, Lingfei
    Tan, Weikai
    Sun, Chen
    Cao, Dongpu
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 165 : 43 - 53