Flat commutative ring epimorphisms of almost Krull dimension zero

被引:0
|
作者
Positselski, Leonid [1 ,2 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 1, Czech Republic
[2] Inst Informat Transmiss Problems, Lab Algebra & Number Theory, Moscow 127051, Russia
关键词
Commutative rings; flat ring epimorphisms; Gabriel filters of ideals; torsion modules; contramodules; semilocal rings of Krull dimension zero; almost perfect rings; divisible modules; strongly flat modules; weakly cotorsion modules; Geigle-Lenzing perpendicular subcategories; STRONGLY FLAT; MODULES;
D O I
10.1142/S0219498823500603
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider flat epimorphisms of commutative rings R -> U such that, for every ideal I subset of R for which IU = U, the quotient ring R/I is semilocal of Krull dimension zero. Under these assumptions, we show that the projective dimension of the R-module U does not exceed 1. We also describe the Geigle-Lenzing perpendicular subcategory U-&updatedExpOTTOM;0,U-1 in R -Mod. Assuming additionally that the ring U and all the rings R/I are perfect, we show that all flat R-modules are U-strongly flat. Thus, we obtain a generalization of some results of the paper [6], where the case of the localization U = S-1R of the ring R at a multiplicative subset S subset of R was considered.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On the S-Krull dimension of a commutative ring
    Kim, Hwankoo
    Mahdou, Najib
    Oubouhou, El Houssaine
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [2] FLAT RING EPIMORPHISMS AND UNIVERSAL LOCALIZATIONS OF COMMUTATIVE RINGS
    Hugel, Lidia Angeleri
    Marks, Frederik
    Stovicek, Jan
    Takahashi, Ryo
    Vitoria, Jorge
    QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (04): : 1489 - 1520
  • [3] COMMUTATIVE RING EPIMORPHISMS
    STORRER, HH
    COMMENTARII MATHEMATICI HELVETICI, 1968, 43 (04) : 378 - &
  • [4] The Krull dimension-dependent elements of a Noetherian commutative ring
    Babaei, S.
    Sevim, E. Sengelen
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (02)
  • [5] COMMUTATIVE MONOID RINGS WITH KRULL DIMENSION
    OKNINSKI, J
    LECTURE NOTES IN MATHEMATICS, 1988, 1320 : 251 - 259
  • [6] The φ-Krull dimension of some commutative extensions
    El Khalfaoui, Rachida
    Mahdou, Najib
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (09) : 3800 - 3810
  • [7] KRULL DIMENSION OF COMMUTATIVE SEMIGROUP RINGS
    ARNOLD, J
    GILMER, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A302 - A302
  • [8] ON n-ABSORBING IDEALS AND THE n-KRULL DIMENSION OF A COMMUTATIVE RING
    Moghimi, Hosein Fazaeli
    Naghani, Sadegh Rahimi
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (06) : 1225 - 1236
  • [9] Weak Krull dimension over commutative rings
    Tang, GH
    Advances in Ring Theory, Proceedings, 2005, : 215 - 224
  • [10] FLAT RING EPIMORPHISMS OF COUNTABLE TYPE
    Positselski, Leonid
    GLASGOW MATHEMATICAL JOURNAL, 2020, 62 (02) : 383 - 439