Achieving an acceptable level of fertility in herds is difficult for many dairy producers because identifying cows in estrus has become challenging owing to poor estrus expression, increased herd size, and lack of time and skilled labor for estrus detection. As a result, synchronization of estrus is often used to manage reproduction. The aims of this study were (1) to identify artificial inseminations (AI) that were performed following synchronization and (2) to assess the effect of synchronization on genetic parameters and evaluation of fertility traits. This study used breeding data collected between 1995 and 2021 from over 4,600 Australian dairy herds that had at least 30 matings per year. Because breeding methods were not reported, the recording pattern of breeding dates showing a large proportion of the total AI being recorded on a single date of the year served as an indicator of synchronization. First, the proportion of AI recorded on each day of the year was calculated defined when a herd with, for instance, only 30 matings in a year, had at least 0.20 or more AI on the same day. As the number of breedings in a herd-year increased, the threshold for classifying AI was continuassumption that mating of many cows on a single date From the current data, we deduced that 0.11 of all AI timed AI, TAI). The proportion of AI classified as TAI estimating genetic parameters and breeding values, the interval between calving and first service (CFS) was found to be the most affected trait. The phenotypic and additive genetic variance and heritability, as well as variability and reliability of estimated breeding values of bulls and cows for CFS were lower for TAI than for AI performed following detected estrus (i.e., estrus-detected AI, EAI). For calving interval, first service nonreturn rate (FNRR), and successful calving rate to first service, genetic correlations between the same trait measured in TAI and EAI were close to 1, in contrast to 0.55 for CFS. The lower genetic variances and heritabilities for FNRR and calving interval in TAI than in EAI suggests that synchronization reduces the genetic variability of fertility. In conclusion, TAI makes CFS an ineffective measure of fertility. One approach to minimize this effect on genetic evaluations is to iden-tify TAI (using the method described for example) and then set the CFS of these cows as missing records when running multitrait genetic evaluations of fertility traits that include CFS. In the long term, the most practical and accurate way to reduce the effect of synchroniza-tion on genetic evaluations is to record TAI along with mating data.