Multiscale computational fluid dynamics modelling of spatial ALD on porous li-ion battery electrodes

被引:0
|
作者
Li, Zoushuang [1 ]
Chen, Yuanxiao [1 ]
Nie, Yufeng [1 ]
Yang, Fan [1 ]
Liu, Xiao [1 ]
Gao, Yuan [1 ]
Shan, Bin [2 ]
Chen, Rong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Intelligent Mfg Equipment & Technol, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die Mould Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiscale modelling; CFD; Spatial ALD; Porous electrodes; Dynamic mesh; ATOMIC LAYER DEPOSITION; THIN-FILM; AL2O3; TEMPERATURE; MECHANISMS; DIFFUSION; COVERAGE; TIO2;
D O I
10.1016/j.cej.2023.147486
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The self-limiting surface reaction characteristic of atomic layer deposition (ALD) makes it ideal for the surface modification of electrode materials for lithium-ion batteries (LIBs). Spatial ALD shows promise as a scalable method for the coating on pre-fabricated electrode sheets. As a strong-coupled multiscale process, various process conditions and microstructure parameters have great influences on the macroscale fluid dynamics and the pore-scale diffusion-reaction process, thus affecting the coating efficiency. This study presents a multiscale numerical model that combines computational fluid dynamics (CFD) with multilevel pore-scale diffusion-reaction kinetics to explore the spatial ALD process on porous LIB electrodes. The dynamic mesh method is utilized to simulate electrode movement. The considerable active surface-to-volume ratio of the porous structure limits the precursor infiltration depth due to the low diffusion rate and inadequate precursor supply. As the electrode velocity increases, an asymmetric distribution of precursor concentration under the injector is observed with a rapid decrease. Elevating both the precursor concentration and inlet gas velocity augments the coating depth by enhancing the supply of the precursor. The experimental data aligns well with our numerical results, verifying the accuracy of the multiscale CFD model. Our observations reveal that a relatively lower operating pressure, around 0.1 atm, compared to 0.01 atm and 1 atm, optimizes the deposition rate along the electrode depth during the half-ALD cycle, especially when the pore size is larger. Electrode porosity of about 0.4 notably improves coating uniformity by elevating the precursor diffusion rate. Predictions show that with a substrate velocity of 0.2 m/s, the coating depth on an electrode having higher porosity at the top compared to the bottom via atmospheric spatial ALD could reach a depth of 38 mu m with a precursor utilization of 78 %.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes
    Yersak, Alexander S.
    Sharma, Kashish
    Wallas, Jasmine M.
    Dameron, Arrelaine A.
    Li, Xuemin
    Yang, Yongan
    Hurst, Katherine E.
    Ban, Chunmei
    Tenent, Robert C.
    George, Steven M.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (01):
  • [2] Multiscale modelling of Si based Li-ion battery anodes
    Silveri, Fabrizio
    Alberghini, Matteo
    Esnault, Vivien
    Bertinetti, Andrea
    Rouchon, Virgile
    Giuliano, Mattia
    Gudendorff, Gauthier
    Zhao, Chen
    Bikard, Jerome
    Sgroi, Mauro
    Tommasi, Alessio
    Petit, Martin
    JOURNAL OF POWER SOURCES, 2024, 598
  • [3] Computational and Experimental Observation of Li-Ion Concentration Distribution and Diffusion-Induced Stress in Porous Battery Electrodes
    Ji, Liang
    Guo, Zhansheng
    Wu, Yajun
    ENERGY TECHNOLOGY, 2017, 5 (09) : 1702 - 1711
  • [4] Optimal Spatial Distribution of Microstructure in Porous Electrodes for Li-ion Batteries
    Methekar, Ravi N.
    Boovaragavan, Vijayasekaran
    Arabandi, Mounika
    Ramadesigan, Venkatasailanathan
    Subramanian, Venkat R.
    Latinwo, Folarin
    Braatz, Richard D.
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 6600 - 6605
  • [5] Investigation on effective thermal conductivities of porous electrodes for the commercial Li-ion battery
    Lu, Z.
    Yu, X. L.
    Xie, Y. F.
    Gao, S.
    Zhang, L. Y.
    Yang, X.
    Meng, X. Z.
    Jin, L. W.
    INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND GREEN TECHNOLOGY 2018, 2019, 268
  • [6] Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system
    Saw, Lip Huat
    Ye, Yonghuang
    Yew, Ming Chian
    Chong, Wen Tong
    Yew, Ming Kun
    Ng, Tan Ching
    APPLIED ENERGY, 2017, 204 : 1489 - 1499
  • [7] Impedance simulation of a Li-ion battery with porous electrodes and spherical Li+ intercalation particles
    Huang, R. W. J. M.
    Chung, Foen
    Kelder, E. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (08) : A1459 - A1465
  • [8] Modeling 3D Microstructure and Ion Transport in Porous Li-Ion Battery Electrodes
    Stephenson, David E.
    Walker, Bryce C.
    Skelton, Cole B.
    Gorzkowski, Edward P.
    Rowenhorst, David J.
    Wheeler, Dean R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (07) : A781 - A789
  • [9] Population dynamics of driven reactive mixtures applied to Li-ion battery electrodes
    Zhao, Hongbo
    Bazant, Martin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [10] Analysis of Three-dimensional Porous Network Structure of Li-ion Battery Electrodes
    Fukumitsu, Hitoshi
    Terada, Kenji
    Suehiro, Shogo
    Taki, Katsuhiko
    Cheon, Yongsung
    ELECTROCHEMISTRY, 2015, 83 (01) : 2 - 6