Switching to Discriminative Image Captioning by Relieving a Bottleneck of Reinforcement Learning

被引:5
|
作者
Honda, Ukyo [1 ,2 ]
Watanabe, Taro [3 ]
Matsumoto, Yuji [2 ]
机构
[1] CyberAgent Inc, Tokyo, Japan
[2] RIKEN, Tokyo, Japan
[3] Nara Inst Sci & Technol, Ikoma, Nara, Japan
关键词
D O I
10.1109/WACV56688.2023.00118
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Discriminativeness is a desirable feature of image captions: captions should describe the characteristic details of input images. However, recent high-performing captioning models, which are trained with reinforcement learning (RL), tend to generate overly generic captions despite their high performance in various other criteria. First, we investigate the cause of the unexpectedly low discriminativeness and show that RL has a deeply rooted side effect of limiting the output words to high-frequency words. The limited vocabulary is a severe bottleneck for discriminativeness as it is difficult for a model to describe the details beyond its vocabulary. Then, based on this identification of the bottleneck, we drastically recast discriminative image captioning as a much simpler task of encouraging low-frequency word generation. Hinted by long-tail classification and debiasing methods, we propose methods that easily switch off-the-shelf RL models to discriminativeness-aware models with only a single-epoch fine-tuning on the part of the parameters. Extensive experiments demonstrate that our methods significantly enhance the discriminativeness of off-the-shelf RL models and even outperform previous discriminativeness-aware methods with much smaller computational costs. Detailed analysis and human evaluation also verify that our methods boost the discriminativeness without sacrificing the overall quality of captions.(1)
引用
收藏
页码:1124 / 1134
页数:11
相关论文
共 50 条
  • [1] Discriminative Style Learning for Cross-Domain Image Captioning
    Yuan, Jin
    Zhu, Shuai
    Huang, Shuyin
    Zhang, Hanwang
    Xiao, Yaoqiang
    Li, Zhiyong
    Wang, Meng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 1723 - 1736
  • [2] Reinforcement Learning Transformer for Image Captioning Generation Model
    Yan, Zhaojie
    FIFTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2022, 2023, 12701
  • [3] Image Captioning using Reinforcement Learning with BLUDEr Optimization
    Devi, P. R.
    Thrivikraman, V
    Kashyap, D.
    Shylaja, S. S.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2020, 30 (04) : 607 - 613
  • [4] Image Captioning using Adversarial Networks and Reinforcement Learning
    Yan, Shiyang
    Wu, Fangyu
    Smith, Jeremy S.
    Lu, Wenjin
    Zhang, Bailing
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 248 - 253
  • [5] Image Captioning using Reinforcement Learning with BLUDEr Optimization
    P. R. Devi
    V. Thrivikraman
    D. Kashyap
    S. S. Shylaja
    Pattern Recognition and Image Analysis, 2020, 30 : 607 - 613
  • [6] Image Captioning: From Encoder-Decoder to Reinforcement Learning
    Tang, Yu
    2022 6TH INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATIONS, ICISPC, 2022, : 6 - 10
  • [7] Remote sensing image captioning via Variational Autoencoder and Reinforcement Learning
    Shen, Xiangqing
    Liu, Bing
    Zhou, Yong
    Zhao, Jiaqi
    Liu, Mingming
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [8] Improving Reinforcement Learning Based Image Captioning with Natural Language Prior
    Guo, Tszhang
    Chang, Shiyu
    Yu, Mo
    Bai, Kun
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 751 - 756
  • [9] Deep Reinforcement Learning-based Image Captioning with Embedding Reward
    Ren, Zhou
    Wang, Xiaoyu
    Zhang, Ning
    Lv, Xutao
    Li, Li-Jia
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 1151 - 1159
  • [10] Multi-Level Policy and Reward Reinforcement Learning for Image Captioning
    Liu, An-An
    Xu, Ning
    Zhang, Hanwang
    Nie, Weizhi
    Su, Yuting
    Zhang, Yongdong
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 821 - 827