Recognizing Textual Inference in Mongolian Bar Exam Questions

被引:0
|
作者
Khaltarkhuu, Garmaabazar [1 ]
Batjargal, Biligsaikhan [2 ]
Maeda, Akira [3 ]
机构
[1] Ritsumeikan Univ, Grad Sch Informat Sci & Engn, Kusatsu, Shiga 5258577, Japan
[2] Ritsumeikan Univ, Res Org Sci & Technol, Kusatsu, Shiga 5258577, Japan
[3] Ritsumeikan Univ, Coll Informat Sci & Engn, Kusatsu, Shiga 5258577, Japan
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 03期
关键词
natural language inference; deep learning; Mongolian bar exam questions; legal analysis;
D O I
10.3390/app14031073
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper examines how to apply deep learning techniques to Mongolian bar exam questions. Several approaches that utilize eight different fine-tuned transformer models were demonstrated for recognizing textual inference in Mongolian bar exam questions. Among eight different models, the fine-tuned bert-base-multilingual-cased obtained the best accuracy of 0.7619. The fine-tuned bert-base-multilingual-cased was capable of recognizing "contradiction", with a recall of 0.7857 and an F1 score of 0.7674; it recognized "entailment" with a precision of 0.7750, a recall of 0.7381, and an F1 score of 0.7561. Moreover, the fine-tuned bert-large-mongolian-uncased showed balanced performance in recognizing textual inference in Mongolian bar exam questions, thus achieving a precision of 0.7561, a recall of 0.7381, and an F1 score of 0.7470 for recognizing "contradiction".
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Recognizing Textual Entailment Using Inference Phenomenon
    Ren, Han
    Li, Xia
    Feng, Wenhe
    Wan, Jing
    CHINESE LEXICAL SEMANTICS, CLSW 2017, 2018, 10709 : 293 - 302
  • [2] Recognizing Implied Predicate-Argument Relationships in Textual Inference
    Stern, Asher
    Dagan, Ido
    PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, 2014, : 739 - 744
  • [3] The effect of distributed questioning with varied examples on exam performance on inference questions
    Glass, Arnold Lewis
    EDUCATIONAL PSYCHOLOGY, 2009, 29 (07) : 831 - 848
  • [4] Recognizing Textual Entailment with Deep-Shallow Semantic Analysis and Logical Inference
    Wotzlaw, Andreas
    Coote, Ravi
    SEMAPRO 2010: THE FOURTH INTERNATIONAL CONFERENCE ON ADVANCES IN SEMANTIC PROCESSING, 2010, : 118 - 125
  • [5] Textual Entailment in Legal Bar Exam Question Answering Using Deep Siamese Networks
    Kim, Mi-Young
    Lu, Yao
    Goebel, Randy
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE (JSAI-ISAI 2017), 2018, 10838 : 35 - 48
  • [6] EXAM QUESTIONS
    STANFORD, E
    NEW SCIENTIST, 1993, 138 (1871) : 50 - 50
  • [7] Exam Questions
    McKay, D. R.
    Hendry, J. M.
    PLASTIC SURGERY, 2019, 27 (04) : 350 - 351
  • [8] BAR EXAM BLUES
    REIDINGER, P
    ABA JOURNAL, 1987, 73 : 34 - 34
  • [9] RETHINKING THE BAR EXAM
    HEIDENREICH, DR
    TRIAL, 1968, 4 (06): : 39 - 39
  • [10] Questions for the Specialist Exam
    不详
    LARYNGO-RHINO-OTOLOGIE, 2020, 99 (04) : 262 - 263