Recent Progress in Ruthenium-Based Electrocatalysts for Water Oxidation under Acidic Condition

被引:14
|
作者
Sohail, Muhammad [1 ,2 ]
Lv, Weiqiang [1 ,2 ,3 ]
Mei, Zongwei [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Phys, Huzhou 313001, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Phys, Chengdu 611731, Peoples R China
关键词
electrocatalytic watersplitting; PEMW electrolysis; acidic OER; Ru-based electrocatalyst; in situ/operandoexperimental techniques; theoreticalcalculation; OXYGEN EVOLUTION REACTION; ELECTRONIC-STRUCTURE; B-SITE; RU; STABILITY; EFFICIENT; OXIDE; NANOPARTICLES; PYROCHLORE; PERFORMANCE;
D O I
10.1021/acssuschemeng.3c05415
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Proton exchange membrane water electrolysis (PEMWE) is considered the most compatible technology with intermittent renewable energies for clean hydrogen generation. More than that, compared with alkaline electrolyzers, the totality of the practicality enhances due to the obvious advantages such as electrolysis efficiency, high hydrogen purity, low operation pressure, etc. However, the sluggish four-electron-transfer reaction of the oxygen evolution reaction (OER), which involves complex intermediates and multiple reaction steps, significantly impacts the overall electrolysis efficiency of PEMWE. Therefore, developing highly efficient, stable, and low-cost high-tech electrocatalysts for acidic OER is crucial. In comparison to expensive commercial iridium or iridium oxide electrocatalyst, Ru or Ru oxides are much cheaper alternatives that demonstrate superior catalytic performance for acidic OER. In this perspective, the generally accepted OER mechanisms including AEM and LOM are introduced with corresponding reaction pathways. Then, Ru-based electrocatalysts are explicated on performances and mechanisms for acidic OER, which include Ru metal and Ru metal-based alloys, RuO2-based catalysts, Ru oxide solid solutions, perovskites, pyrochlores, single atoms, and other Ru-based catalysts. Finally, the challenges and future research perspectives of Ru-based catalysts for acidic OER are discussed.
引用
收藏
页码:17564 / 17594
页数:31
相关论文
共 50 条
  • [1] Novel engineering of ruthenium-based electrocatalysts for acidic water oxidation: A mini review
    Zhou, Feng
    Zhang, Lijie
    Li, Juan
    Wang, Qi
    Chen, Yurou
    Chen, Hailun
    Lu, Guolong
    Chen, Guang
    Jin, Huile
    Wang, Shun
    Wang, Jichang
    ENGINEERING REPORTS, 2021, 3 (08)
  • [2] Recent Progress in Electrocatalysts for Acidic Water Oxidation
    Lei, Zhanwu
    Wang, Tanyuan
    Zhao, Bote
    Cai, Wenbin
    Liu, Yang
    Jiao, Shuhong
    Li, Qing
    Cao, Ruiguo
    Liu, Meilin
    ADVANCED ENERGY MATERIALS, 2020, 10 (23)
  • [3] Recent Progress in Strategies for Ruthenium-Based Electrocatalysts for Alkaline Hydrogen Evolution and Oxidation Reactions
    Kim, Jiwon
    Lee, Jinwoo
    ENERGY & FUELS, 2023, 37 (23) : 17765 - 17781
  • [4] Recent Progress on Ruthenium-Based Electrocatalysts towards the Hydrogen Evolution Reaction
    Li, Lulu
    Tian, Fenyang
    Qiu, Longyu
    Wu, Fengyu
    Yang, Weiwei
    Yu, Yongsheng
    CATALYSTS, 2023, 13 (12)
  • [5] Ruthenium-based oxides as electrocatalysts for acidic oxygen evolution
    Wan, Rendian
    Huang, Guangxing
    Liu, Qingxun
    Zhao, Bote
    Kexue Tongbao/Chinese Science Bulletin, 2024, 69 (25): : 3705 - 3714
  • [6] Recent advances of ruthenium-based electrocatalysts for hydrogen energy
    Hu, Chun
    Xu, Jijian
    Tan, Yuanzhi
    Huang, Xiaoqing
    TRENDS IN CHEMISTRY, 2023, 5 (03) : 225 - 239
  • [7] Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction
    Bae, Seo-Yoon
    Mahmood, Javeed
    Jeon, In-Yup
    Baek, Jong-Beom
    NANOSCALE HORIZONS, 2020, 5 (01) : 43 - 56
  • [8] Recent Progress in Bifunctional Electrocatalysts for Overall Water Splitting under Acidic Conditions
    Jin, Haneul
    Joo, Jinwhan
    Chaudhari, Nitin K.
    Choi, Sang-Il
    Lee, Kwangyeol
    CHEMELECTROCHEM, 2019, 6 (13): : 3244 - 3253
  • [9] Strategies for the design of ruthenium-based electrocatalysts toward acidic oxygen evolution reaction
    Hou, Liqiang
    Gu, Xiumin
    Cui, Xuemei
    Tang, Jiachen
    Li, Zijian
    Liu, Xien
    Cho, Jaephil
    EES CATALYSIS, 2023, 1 (05): : 619 - 644
  • [10] Recent Progress of Ruthenium-based Nanomaterials for Electrochemical Hydrogen Evolution
    Zhang, Shan
    Li, Jing
    Wang, Erkang
    CHEMELECTROCHEM, 2020, 7 (22) : 4526 - 4534