Non-targeted metabolomics for the identification of plasma metabolites associated with organic anion transporting polypeptide 1B1 function

被引:1
|
作者
Hamalainen, Kreetta [1 ,2 ]
Hirvensalo, Paeivi [1 ,2 ,3 ]
Neuvonen, Mikko [1 ,2 ]
Tornio, Aleksi [1 ,2 ,3 ,4 ]
Backman, Janne T. [1 ,2 ,5 ]
Lehtonen, Marko [6 ,7 ]
Niemi, Mikko [1 ,2 ,5 ,8 ]
机构
[1] Univ Helsinki, Dept Clin Pharmacol, Helsinki, Finland
[2] Univ Helsinki, Fac Med, Individualized Drug Therapy Res Program, Helsinki, Finland
[3] Univ Turku, Inst Biomed, Integrat Physiol & Pharmacol, Turku, Finland
[4] Turku Univ Hosp, Unit Clin Pharmacol, Turku, Finland
[5] Helsinki Univ Hosp, HUS Diagnost Ctr, Dept Clin Pharmacol, Helsinki, Finland
[6] Univ Eastern Finland, Fac Hlth Sci, Sch Pharm, Kuopio, Finland
[7] Bioctr Kuopio, LC MS Metabol Ctr, Kuopio, Finland
[8] Univ Helsinki, Dept Clin Pharmacol, POB 20, Helsinki 00014, Finland
来源
基金
欧洲研究理事会;
关键词
SLCO1B1; POLYMORPHISM; HAPLOTYPE RECONSTRUCTION; BILE-ACIDS; PHARMACOKINETICS; PHARMACOGENETICS; COPROPORPHYRINS; ATORVASTATIN; PRAVASTATIN; BIOMARKERS; VARIANTS;
D O I
10.1111/cts.13773
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Our aim was to evaluate biomarkers for organic anion transporting polypeptide 1B1 (OATP1B1) function using a hypothesis-free metabolomics approach. We analyzed fasting plasma samples from 356 healthy volunteers using non-targeted metabolite profiling by liquid chromatography high-resolution mass spectrometry. Based on SLCO1B1 genotypes, we stratified the volunteers to poor, decreased, normal, increased, and highly increased OATP1B1 function groups. Linear regression analysis, and random forest (RF) and gradient boosted decision tree (GBDT) regressors were used to investigate associations of plasma metabolite features with OATP1B1 function. Of the 9152 molecular features found, 39 associated with OATP1B1 function either in the linear regression analysis (p < 10-5) or the RF or GBDT regressors (Gini impurity decrease > 0.01). Linear regression analysis showed the strongest associations with two features identified as glycodeoxycholate 3-O-glucuronide (GDCA-3G; p = 1.2 x 10(-20) for negative and p = 1.7 x 10(-19) for positive electrospray ionization) and one identified as glycochenodeoxycholate 3-O-glucuronide (GCDCA-3G; p = 2.7 x 10(-16)). In both the RF and GBDT models, the GCDCA-3G feature showed the strongest association with OATP1B1 function, with Gini impurity decreases of 0.40 and 0.17. In RF, this was followed by one GDCA-3G feature, an unidentified feature with a molecular weight of 809.3521, and the second GDCA-3G feature. In GBDT, the second and third strongest associations were observed with the GDCA-3G features. Of the other associated features, we identified with confidence two representing lysophosphatidylethanolamine 22:5. In addition, one feature was putatively identified as pregnanolone sulfate and one as pregnenolone sulfate. These results confirm GCDCA-3G and GDCA-3G as robust OATP1B1 biomarkers in human plasma.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Non-targeted metabolomics and machine learning for the identification of plasma metabolites associated with organic anion transporting polypeptide 1B1 function
    Hamalainen, K.
    Neuvonen, M.
    Hirvensalo, P.
    Lehtonen, M.
    Auriola, S.
    Tornio, A.
    Backman, J.
    Niemi, M.
    EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 2022, 78 (SUPPL 1) : S33 - S34
  • [2] Non-targeted metabolomics and machine learning for the identification of plasma metabolites associated with organic anion transporting polypeptide 1B1 function
    Hamalainen, Kreetta K.
    Neuvonen, Mikko
    Hirvensalo, Paivi
    Lehtonen, Marko
    Tornio, Aleksi
    Backman, Janne T.
    Niemi, Mikko
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2023, 132 : 19 - 19
  • [3] Untargeted metabolomics and machine learning for the identification of plasma metabolites associated with organic anion transporting polypeptide 1B1 function
    Hamalainen, Kreetta
    Neuvonen, Mikko
    Hirvensalo, Paivi
    Lehtonen, Marko
    Auriola, Seppo
    Tornio, Aleksi
    Backmann, Janne
    Niemi, Mikko
    BRITISH JOURNAL OF PHARMACOLOGY, 2023, 180 : 386 - 386
  • [4] Role of transmembrane domain 10 for the function of organic anion transporting polypeptide 1B1
    Gui, Chunshan
    Hagenbuch, Bruno
    PROTEIN SCIENCE, 2009, 18 (11) : 2298 - 2306
  • [5] Effects of natural products on the function of human organic anion transporting polypeptide 1B1
    Wu, Lan-Xiang
    Guo, Cheng-Xian
    Qu, Qiang
    Yu, Jing
    Chen, Wang-Qing
    Wang, Guo
    Fan, Lan
    Li, Qing
    Zhang, Wei
    Zhou, Hong-Hao
    XENOBIOTICA, 2012, 42 (04) : 339 - 348
  • [6] Interaction of porphyrins with human organic anion transporting polypeptide 1B1
    Campbell, Scott D.
    Lau, Wan F.
    Xu, Jinghai J.
    CHEMICO-BIOLOGICAL INTERACTIONS, 2009, 182 (01) : 45 - 51
  • [7] Oligomerization Study of Human Organic Anion Transporting Polypeptide 1B1
    Ni, Chunxu
    Yu, Xuan
    Fang, Zihui
    Huang, Jiujiu
    Hong, Mei
    MOLECULAR PHARMACEUTICS, 2017, 14 (02) : 359 - 367
  • [8] Protein kinase C affects transport function of organic anion transporting polypeptide 1B1
    Hong, Mei
    Hong, Weifang
    Yu, Xuan
    Huang, Jiujiu
    FASEB JOURNAL, 2014, 28 (01):
  • [9] Identification and Characterization of Palmitoylation Sites in the Organic Anion Transporting Polypeptide 1B1 (OATP1B1)
    Villanueva, Cecilia
    Nolte, Whitney
    Hagenbuch, Bruno
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2023, 385
  • [10] EFFECT OF RARE GENETIC VARIANTS ON ORGANIC ANION TRANSPORTING POLYPEPTIDE 1B1
    Kiander, W.
    Kidron, H.
    Niemi, M.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 123 : 3 - 3