Artificial Intelligence ( AI) Based, Machine Learning (ML) Predicting the Individual Absolute Risk of Acute Graft Versus Host Disease (aGvHD) in a Retrospective International Cohort

被引:0
|
作者
Reschke, Madlen [1 ,2 ,3 ,4 ]
Gross, Jonathan P. [1 ,2 ,3 ,4 ]
Penack, Olaf [3 ,4 ,5 ]
Sueruecue, Gueluestan [6 ]
Summers, Corinne [7 ]
Seiler, Jonas [1 ]
Weschke, Daniel [1 ,2 ,3 ,4 ]
Higgins, David [1 ]
Oevermann, Lena [1 ,2 ,3 ,4 ]
机构
[1] Charite Univ Med Berlin, Berlin Inst Hlth, Berlin, Germany
[2] Charite Univ Med Berlin, Dept Pediat Oncol & Hematol, Berlin, Germany
[3] Free Univ Berlin, Berlin, Germany
[4] Humboldt Univ, Berlin, Germany
[5] Charite Univ Med Berlin, Dept Hematol Oncol & Tumorimmunol, Berlin, Germany
[6] Charite Univ Med Berlin, Inst Transfus Med, H&I Lab, Berlin, Germany
[7] Fred Hutchinson Canc Res Ctr, Seattle, WA USA
关键词
D O I
10.1182/blood-2023-181535
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:3
相关论文
共 16 条
  • [1] RESULTS OF FEASIBILITY STUDY WITH SELF-LEARNING, ARTIFICIAL INTELLIGENCE BASED, MACHINE LEARNING TOOL PREDICTING THE ABSOLUTE INDIVIDUAL RISK OF ACUTE GRAFT-VERSUS-HOST-DISEASE IN A RETROSPECTIVE PEDIATRIC COHORT
    Reschke, Madlen
    Gross, Jonathan Phillip
    Seiler, Jonas
    Weschke, Daniel
    Higgins, David C.
    Oevermann, Lena
    BONE MARROW TRANSPLANTATION, 2023, 58 (SUPP1) : 313 - 314
  • [2] Evaluation of Artificial Intelligence (AI) for Acute Graft-Versus-Host Disease(GVHD) Classification
    Choi, Yoonhee
    BLOOD, 2023, 142
  • [3] Multi-Omics and Machine Learning Predict the Risk of Acute Graft Versus Host Disease
    Li, Ruixin
    Fan, Jinting
    Niu, Mingming
    Zhang, Haixiao
    Wang, Hong
    Jiang, Erlie
    BLOOD, 2024, 144 : 7364 - 7365
  • [4] Two machine learning-derived nomogram for predicting the occurrence and severity of acute graft-versus-host disease: a retrospective study based on serum biomarkers
    He, Qiang
    Li, Xin
    Fang, Yuan
    Kong, Fansheng
    Yu, Zhe
    Xie, Linna
    FRONTIERS IN GENETICS, 2024, 15
  • [5] Acute Graft-Versus-Host Disease After Orthotopic Liver Transplantation: Predicting This Rare Complication Using Machine Learning
    Cooper, Jason P.
    Perkins, James D.
    Warner, Paul R.
    Shingina, Alexandra
    Biggins, Scott W.
    Abkowitz, Janis L.
    Reyes, Jorge D.
    LIVER TRANSPLANTATION, 2022, 28 (03) : 407 - 421
  • [6] An EEG-Based, Artificial Intelligence/Machine Learning (AI/ML) Biomarker for Predicting Treatment Response in Depressed Patients Receiving an SSRI Antidepressant or TMS Therapy
    Li, Qiang
    Detke, Michael
    Fan, Miaolin
    Zhang, Fan
    Paul, Steven
    Breier, Alan
    Potter, William
    Alphs, Larry
    Wolkowitz, Owen
    Carpenter, Linda
    Wang, Ken
    NEUROPSYCHOPHARMACOLOGY, 2024, 49 : 89 - 89
  • [7] Predicting Acute Graft-Versus-Host Disease Using Machine Learning and Longitudinal Vital Sign Data From Electronic Health Records
    Tang, Shengpu
    Chappell, Grant T.
    Mazzoli, Amanda
    Tewari, Muneesh
    Choi, Sung Won
    Wiens, Jenna
    JCO CLINICAL CANCER INFORMATICS, 2020, 4 : 128 - 135
  • [8] Risk factor analysis for predicting chronic graft-versus-host disease of progressive or quiescent type in a cohort of patients with a history of acute graft-versus-host disease after allogeneic stem cell transplantation.
    Sohn, SK
    Kim, DH
    Baek, JH
    Kim, JG
    Lee, KB
    Lee, KH
    Lee, JH
    Choi, SJ
    Lee, JH
    BLOOD, 2005, 106 (11) : 419B - 419B
  • [9] Risk factor analysis for predicting progressive or quiescent-type chronic graft-versus-host disease in patient cohort with history of acute graft-versus-host disease after allogeneic stem cell transplantation
    Sohn, SK
    Kim, DH
    Baek, JH
    Kim, JG
    Lee, KB
    Lee, KH
    Lee, JH
    Choi, SJ
    Lee, JH
    Shin, IH
    BONE MARROW TRANSPLANTATION, 2006, 37 : S82 - S82
  • [10] Risk-factor analysis for predicting progressive- or quiescent-type chronic graft-versus-host disease in a patient cohort with a history of acute graft-versus-host disease after allogeneic stem cell transplantation
    Sohn, SK
    Kim, DH
    Baek, JH
    Kim, JG
    Lee, KB
    Lee, KH
    Lee, JH
    Choi, SJ
    Lee, JH
    Shin, IH
    BONE MARROW TRANSPLANTATION, 2006, 37 (07) : 699 - 708