Modified Halpern and viscosity methods for hierarchical variational inequalities on Hadamard manifolds

被引:4
|
作者
Khammahawong, Konrawut [1 ]
Salisu, Sani [2 ,3 ,4 ]
机构
[1] Rajamangala Univ Technol Thanyaburi RMUTT, Fac Sci & Technol, Dept Math & Comp Sci, Program Appl Stat,Appl Math Sci & Engn Res Unit AM, Pathum Thani 12110, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, Room SCL 802,Sci Lab Bldg,126 Pracha Uthit Rd, Bangkok 10140, Thailand
[3] King Mongkuts Univ TechnologyThonburi KMUTT, Fac Sci, Dept Math, KMUTT Fixed Point Res Lab,Fixed Point Lab, Room SCL 802, Sci Lab Bldg, 126 Pracha Uthit Rd, Thung Khru 10140, Bangkok, Thailand
[4] Sule Lamido Univ Kafin Hausa, Fac Nat & Appl Sci, Dept Math, Jigawa, Nigeria
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2024年 / 43卷 / 01期
关键词
Hadamard manifold; Halpern iteration; Hierarchical variational inequality problem; Nonexpansive mapping; Viscosity iteration; PROXIMAL POINT ALGORITHM; MONOTONE VECTOR-FIELDS; FIXED-POINTS; NONEXPANSIVE-MAPPINGS; APPROXIMATION METHODS; ITERATIVE ALGORITHMS;
D O I
10.1007/s40314-023-02503-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes, in the framework of Hadamard manifolds, two iterative schemes for approximating a solution of a variational inequality problem involving a nonexpansive mapping with a fixed point set of another nonexpansive mapping as constraint. The first scheme is a modified Halpern iteration and the second is a viscosity-type iteration with a weakly contraction mapping. We also discuss some special cases of the mentioned problem. Numerical examples are provided to illustrate the algorithm's numerical behavior.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Modified Halpern and viscosity methods for hierarchical variational inequalities on Hadamard manifolds
    Konrawut Khammahawong
    Sani Salisu
    Computational and Applied Mathematics, 2024, 43
  • [2] IMPLICIT AND EXPLICIT VISCOSITY METHODS FOR HIERARCHICAL VARIATIONAL INEQUALITIES ON HADAMARD MANIFOLDS
    Ansari, Qamrul Hasan
    Babu, Feeroz
    Zeeshan, Mohd
    FIXED POINT THEORY, 2022, 23 (02): : 447 - 472
  • [3] IMPLICIT AND EXPLICIT VISCOSITY METHODS FOR HIERARCHICAL VARIATIONAL INEQUALITIES ON HADAMARD MANIFOLDS
    Ansari, Qamrul Hasan
    Babu, Feeroz
    Zeeshan, Mohd.
    FIXED POINT THEORY, 2023, 24 (01): : 23 - 48
  • [4] Viscosity method for hierarchical variational inequalities and variational inclusions on Hadamard manifolds
    Filali, Doaa
    Dilshad, Mohammad
    Akram, Mohammad
    Babu, Feeroz
    Ahmad, Izhar
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [5] Viscosity method for hierarchical variational inequalities and variational inclusions on Hadamard manifolds
    Doaa Filali
    Mohammad Dilshad
    Mohammad Akram
    Feeroz Babu
    Izhar Ahmad
    Journal of Inequalities and Applications, 2021
  • [6] VISCOSITY METHOD WITH A φ-CONTRACTION MAPPING FOR HIERARCHICAL VARIATIONAL INEQUALITIES ON HADAMARD MANIFOLDS
    Al-Homidan, Suliman
    Ansari, Qamrul Hasan
    Babu, Feeroz
    Yao, Jen-Chih
    FIXED POINT THEORY, 2020, 21 (02): : 561 - 584
  • [7] Approximate proximal methods for variational inequalities on Hadamard manifolds
    Bento, G. C.
    Ferreira, O. P.
    Quiroz, E. A. Papa
    OPTIMIZATION, 2024,
  • [8] Variational inequalities on Hadamard manifolds
    Németh, SZ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (05) : 1491 - 1498
  • [9] Regularization methods for hierarchical variational inequality problems on Hadamard manifolds
    Qamrul Hasan Ansari
    Feeroz Babu
    Moin Uddin
    Arabian Journal of Mathematics, 2023, 12 : 309 - 330
  • [10] Nonsmooth variational inequalities on Hadamard manifolds
    Ansari, Qamrul Hasan
    Islam, Monirul
    Yao, Jen-Chih
    APPLICABLE ANALYSIS, 2020, 99 (02) : 340 - 358