MOD p HOMOLOGY OF UNORDERED CONFIGURATION SPACES OF p POINTS IN PARALLELIZABLE SURFACES

被引:1
|
作者
Chen, Matthew [1 ]
Zhang, Adela yiyu [2 ]
机构
[1] Wayzata High Sch, Plymouth, MN 55446 USA
[2] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
关键词
BETTI NUMBERS; HOMOTOPY; DERIVATIVES; ALGEBRAS;
D O I
10.1090/proc/16683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a short proof that the dimensions of the mod p homology groups of the unordered configuration space B-k(T) of k points in a torus are the same as its Betti numbers for p>2 and k <= p. Hence the integral homology has no p-power torsion. The same argument works for the punctured genus g surface with g>0, thereby recovering a result of Brantner-Hahn-Knudsen via Lubin-Tate theory.
引用
收藏
页码:2239 / 2248
页数:10
相关论文
共 50 条