Strong Unique Continuation from the Boundary for the Spectral Fractional Laplacian

被引:3
|
作者
De Luca, Alessandra [1 ]
Felli, Veronica [2 ]
Siclari, Giovanni [2 ]
机构
[1] Univ Ca Foscari Venezia, Dipartimento Sci Mol & Nanosistemi, Via Torino 155, I-30172 Venice, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
关键词
Spectral fractional Laplacian; boundary behaviour of solutions; unique continuation; monotonicity formula; EQUATIONS; THEOREMS; BEHAVIOR; DOMAINS;
D O I
10.1051/cocv/2023045
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We investigate unique continuation properties and asymptotic behaviour at boundary points for solutions to a class of elliptic equations involving the spectral fractional Laplacian. An extension procedure leads us to study a degenerate or singular equation on a cylinder, with a homogeneous Dirichlet boundary condition on the lateral surface and a non-homogeneous Neumann condition on the basis. For the extended problem, by an Almgren-type monotonicity formula and a blow-up analysis, we classify the local asymptotic profiles at the edge where the transition between boundary conditions occurs. Passing to traces, an analogous blow-up result and its consequent strong unique continuation property is deduced for the nonlocal fractional equation.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Strong unique continuation for the higher order fractional Laplacian
    Garcia-Ferrero, Maria Angeles
    Rueland, Angkana
    MATHEMATICS IN ENGINEERING, 2019, 1 (04): : 715 - 774
  • [2] Strong unique continuation and local asymptotics at the boundary for fractional elliptic equations
    De Luca, Alessandra
    Felli, Veronica
    Vita, Stefano
    ADVANCES IN MATHEMATICS, 2022, 400
  • [3] On (global) unique continuation properties of the fractional discrete Laplacian
    Fernandez-Bertolin, Aingeru
    Roncal, Luz
    Rueland, Angkana
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (09)
  • [4] UNIQUE CONTINUATION FROM CONICAL BOUNDARY POINTS FOR FRACTIONAL EQUATIONS
    DE Luca, Alessandra
    Felli, Veronica
    Vita, Stefano
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2025, 57 (01) : 907 - 950
  • [5] Nonhomogeneous boundary conditions for the spectral fractional Laplacian
    Abatangelo, Nicola
    Dupaigne, Louis
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (02): : 439 - 467
  • [6] Strong unique continuation for m-TH powers of a Laplacian operator with singular coefficients
    Lin, Ching-Lung
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (02) : 569 - 578
  • [7] Space-like strong unique continuation for some fractional parabolic equations
    Arya, Vedansh
    Banerjee, Agnid
    Danielli, Donatella
    Garofalo, Nicola
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (01)
  • [8] Monotonicity of generalized frequencies and the strong unique continuation property for fractional parabolic equations
    Banerjee, Agnid
    Garofalo, Nicola
    ADVANCES IN MATHEMATICS, 2018, 336 : 149 - 241
  • [9] LP-INEQUALITIES FOR THE LAPLACIAN AND UNIQUE CONTINUATION
    AMREIN, WO
    BERTHIER, AM
    GEORGESCU, V
    ANNALES DE L INSTITUT FOURIER, 1981, 31 (03) : 153 - 168
  • [10] UNIQUE CONTINUATION FOR THE SOLUTIONS OF THE LAPLACIAN PLUS A DRIFT
    RUIZ, A
    VEGA, L
    ANNALES DE L INSTITUT FOURIER, 1991, 41 (03) : 651 - 663