leverage;
least median of squares estimator;
outliers;
regression;
robust statistics;
TIME-SERIES;
REGRESSION;
ALGORITHMS;
POINT;
D O I:
10.1093/jrsssb/qkad028
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
The least trimmed squares (LTS) estimator is a popular robust regression estimator. It finds a subsample of h 'good' observations among n observations and applies least squares on that subsample. We formulate a model in which this estimator is maximum likelihood. The model has 'outliers' of a new type, where the outlying observations are drawn from a distribution with values outside the realized range of h 'good', normal observations. The LTS estimator is found to be h(1/2) consistent and asymptotically standard normal in the location-scale case. Consistent estimation of h is discussed. The model differs from the commonly used e-contamination models and opens the door for statistical discussion on contamination schemes, new methodological developments on tests for contamination as well as inferences based on the estimated good data.
机构:
Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USAUniv Maryland, Dept Comp Sci, College Pk, MD 20742 USA
Mount, David M.
Netanyahu, Nathan S.
论文数: 0引用数: 0
h-index: 0
机构:
Bar Ilan Univ, Dept Comp Sci, IL-52900 Ramat Gan, Israel
Univ Maryland, Ctr Automat Res, College Pk, MD 20742 USAUniv Maryland, Dept Comp Sci, College Pk, MD 20742 USA
Netanyahu, Nathan S.
Piatko, Christine D.
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USAUniv Maryland, Dept Comp Sci, College Pk, MD 20742 USA
Piatko, Christine D.
Silverman, Ruth
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, Ctr Automat Res, College Pk, MD 20742 USAUniv Maryland, Dept Comp Sci, College Pk, MD 20742 USA
Silverman, Ruth
Wu, Angela Y.
论文数: 0引用数: 0
h-index: 0
机构:
Amer Univ, Dept Comp Sci, Washington, DC 20016 USAUniv Maryland, Dept Comp Sci, College Pk, MD 20742 USA