Thermostated Susceptible-Infected-Susceptible epidemic model

被引:0
|
作者
Alrebdi, H. I. [1 ]
Steklain, Andre [2 ]
Amorim, Edgard P. M. [3 ]
Zotos, Euaggelos [4 ,5 ]
机构
[1] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Phys, POB 84428, Riyadh 11671, Saudi Arabia
[2] Univ Tecnol Fed Parana, Math Dept, 3165 Ave Silva Jardim, Curitiba, Brazil
[3] Univ Estado Santa Catarina, Dept Fis, BR-89219710 Joinville, SC, Brazil
[4] Aristotle Univ Thessaloniki, Sch Sci, Dept Phys, Thessaloniki 54124, Greece
[5] RUDN Univ, SM Nikolskii Math Inst PeoplesFriendship Univ Rus, Moscow 117198, Russia
关键词
Epidemic; SIS epidemic model; Hamiltonian epidemic model; CANONICAL DYNAMICS; SIMULATIONS;
D O I
10.1016/j.amc.2022.127701
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The evolution of epidemics based on the Susceptible-Infected-Susceptible (SIS) model re-lies on the density of infected individuals rho. Recent results show that the mean density (rho) and its variance Sigma 2 can be regarded as canonical variables and obey Hamilton's equations. Using the Hamiltonian formulation, we study the SIS system coupled to a Nose thermal bath. We reinterpret classical parameters like temperature in an epidemiological context. In contrast to classical epidemiological models, the thermal bath modifies the dynamical behavior of the system by introducing fluctuations, such as those seen in some infectious waves. We study the stability and show that (rho) tends to be half of the value predicted by the original SIS model.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Epidemic extinction in a generalized susceptible-infected-susceptible model
    Chen, Hanshuang
    Huang, Feng
    Zhang, Haifeng
    Li, Guofeng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [2] Epidemic extinction in a simplicial susceptible-infected-susceptible model
    Guo, Yingshan
    Shen, Chuansheng
    Chen, Hanshuang
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (01):
  • [3] Epidemic threshold of the susceptible-infected-susceptible model on complex networks
    Lee, Hyun Keun
    Shim, Pyoung-Seop
    Noh, Jae Dong
    PHYSICAL REVIEW E, 2013, 87 (06):
  • [4] A stochastic susceptible-infected-susceptible epidemic model with Stratonovich processes
    Kang, Yung-Gyung
    Park, Jeong-Man
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2024, 84 (02) : 158 - 163
  • [5] A stochastic susceptible-infected-susceptible epidemic model with Stratonovich processes
    Yung-Gyung Kang
    Jeong-Man Park
    Journal of the Korean Physical Society, 2024, 84 : 158 - 163
  • [6] Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model
    Speidel, Leo
    Klemm, Konstantin
    Eguiluz, Victor M.
    Masuda, Naoki
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [7] Stochastic fluctuations of the transmission rate in the susceptible-infected-susceptible epidemic model
    Mendez, Vicenc
    Campos, Daniel
    Horsthemke, Werner
    PHYSICAL REVIEW E, 2012, 86 (01):
  • [8] Multiple transitions of the susceptible-infected-susceptible epidemic model on complex networks
    Mata, Angelica S.
    Ferreira, Silvio C.
    PHYSICAL REVIEW E, 2015, 91 (01)
  • [9] Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model
    Deng, Keng
    Wu, Yixiang
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) : 929 - 946
  • [10] Global stability analysis of a delayed susceptible-infected-susceptible epidemic model
    Paulhus, Calah
    Wang, Xiang-Sheng
    JOURNAL OF BIOLOGICAL DYNAMICS, 2015, 9 : 45 - 50