Internet traffic tensor completion with tensor nuclear norm

被引:0
|
作者
Li, Can [1 ,2 ]
Chen, Yannan [1 ]
Li, Dong-Hui [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Honghe Univ, Sch Math & Stat, Mengzi 661199, Peoples R China
基金
中国国家自然科学基金;
关键词
Internet traffic flows; Tensor completion; Tensor nuclear norm; Proximal alternating direction method; Global convergence; FACTORIZATION; DECOMPOSITIONS; RECOVERY; RANK;
D O I
10.1007/s10589-023-00545-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The incomplete data is a common phenomenon in traffic network because of the high measurement cost, the failure of data collection systems and unavoidable transmission loss. Recovering the whole data from incomplete data is a very important task in internet engineering and management. In this paper, we adopt the low-rank tensor completion model equipped with tensor nuclear norm to reconstruct the internet traffic data. Besides using a low rank tensor to capture the global information of internet traffic data, we also utilize spatial correlation and periodicity to characterize the local information. The resulting model is a convex and separable optimization. Then, a proximal alternating direction method of multipliers is customized to solve the optimization problem, where all subproblems have closed-form solutions. Convergence analysis of the algorithm is given without any assumptions. Numerical experiments on Abilene and GeANT datasets with random missing and structured loss show that the proposed model and algorithm perform better than other existing algorithms.
引用
收藏
页码:1033 / 1057
页数:25
相关论文
共 50 条
  • [1] Internet traffic tensor completion with tensor nuclear norm
    Can Li
    Yannan Chen
    Dong-Hui Li
    Computational Optimization and Applications, 2024, 87 : 1033 - 1057
  • [2] Traffic Matrix Completion by Weighted Tensor Nuclear Norm Minimization
    Miyata, Takamichi
    2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2023,
  • [3] Nonlinear Transform Induced Tensor Nuclear Norm for Tensor Completion
    Li, Ben-Zheng
    Zhao, Xi-Le
    Ji, Teng-Yu
    Zhang, Xiong-Jun
    Huang, Ting-Zhu
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
  • [4] Nonlinear Transform Induced Tensor Nuclear Norm for Tensor Completion
    Ben-Zheng Li
    Xi-Le Zhao
    Teng-Yu Ji
    Xiong-Jun Zhang
    Ting-Zhu Huang
    Journal of Scientific Computing, 2022, 92
  • [5] Weighted tensor nuclear norm minimization for tensor completion using tensor-SVD
    Mu, Yang
    Wang, Ping
    Lu, Liangfu
    Zhang, Xuyun
    Qi, Lianyong
    PATTERN RECOGNITION LETTERS, 2020, 130 (130) : 4 - 11
  • [6] A weighted nuclear norm method for tensor completion
    College of Science, China Agricultural University, 100083 Beijing, China
    不详
    不详
    Int. J. Signal Process. Image Process. Pattern Recogn., 1 (1-12):
  • [7] Coupled Transformed Induced Tensor Nuclear Norm for Robust Tensor Completion
    Qin, Mengjie
    Lin, Zheyuan
    Wan, Minhong
    Zhang, Chunlong
    Gu, Jason
    Li, Te
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 476 - 483
  • [8] The Twist Tensor Nuclear Norm for Video Completion
    Hu, Wenrui
    Tao, Dacheng
    Zhang, Wensheng
    Xie, Yuan
    Yang, Yehui
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (12) : 2961 - 2973
  • [9] Truncated Nuclear Norm Minimization for Tensor Completion
    Huang, Long-Ting
    So, H. C.
    Chen, Yuan
    Wang, Wen-Qin
    2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 417 - 420
  • [10] On Tensor Completion via Nuclear Norm Minimization
    Ming Yuan
    Cun-Hui Zhang
    Foundations of Computational Mathematics, 2016, 16 : 1031 - 1068