A CMOS-integrated spintronic compute-in-memory macro for secure AI edge devices

被引:26
|
作者
Chiu, Yen-Cheng [1 ]
Khwa, Win-San [2 ]
Yang, Chia-Sheng [1 ]
Teng, Shih-Hsin [1 ]
Huang, Hsiao-Yu [1 ]
Chang, Fu-Chun [1 ]
Wu, Yuan [1 ]
Chien, Yu-An [1 ]
Hsieh, Fang-Ling [1 ]
Li, Chung-Yuan [1 ]
Lin, Guan-Yi [1 ]
Chen, Po-Jung [1 ]
Pan, Tsen-Hsiang [1 ]
Lo, Chung-Chuan [1 ]
Liu, Ren-Shuo [1 ]
Hsieh, Chih-Cheng [1 ]
Tang, Kea-Tiong [1 ]
Ho, Mon-Shu [3 ]
Lo, Chieh-Pu [2 ]
Chih, Yu-Der [2 ]
Chang, Tsung-Yung Jonathan [2 ]
Chang, Meng-Fan [1 ,2 ]
机构
[1] Natl Tsing Hua Univ NTHU, Hsinchu, Taiwan
[2] Taiwan Semicond Mfg Co TSMC, Hsinchu, Taiwan
[3] Natl Chung Hsing Univ NCHU, Taichung, Taiwan
关键词
RERAM; RETENTION;
D O I
10.1038/s41928-023-00994-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A non-volatile compute-in-memory macro that is based on spin-transfer torque magnetic random-access memory can offer secure access control, data protection, rapid response times and high energy efficiency for dot-product edge computing. Artificial intelligence edge devices should offer high inference accuracy and rapid response times, as well as being energy efficient. Ensuring the security of these devices against malicious attacks and illegal access requires data protection mechanisms and secure access control. Here we report a spintronic non-volatile compute-in-memory macro for efficient dot-product edge computing with secure access control for activation, key and data protection against power-on and power-off probing. The approach relies on spintronic-based physically unclonable functions and two-dimensional half-complement physical encryption, as well as a snoop-proof self-decryption burst-read scheme in conjunction with a sparsity-and-rectified-linear-unit-aware early-termination compute-in-memory engine. The 6.6 megabit complementary metal-oxide-semiconductor (CMOS)-integrated macro uses 22 nm spin-transfer torque magnetic random-access memory technology. The macro achieves high randomness (inter-Hamming distance, 0.4999) and high reliability for physically unclonable functionality (intra-Hamming distance, 0), as well as a high energy efficiency for dot-product computation (between 30.1 and 68.0 tera-operations per second per watt).
引用
收藏
页码:534 / +
页数:13
相关论文
共 50 条
  • [1] A CMOS-integrated spintronic compute-in-memory macro for secure AI edge devices
    Yen-Cheng Chiu
    Win-San Khwa
    Chia-Sheng Yang
    Shih-Hsin Teng
    Hsiao-Yu Huang
    Fu-Chun Chang
    Yuan Wu
    Yu-An Chien
    Fang-Ling Hsieh
    Chung-Yuan Li
    Guan-Yi Lin
    Po-Jung Chen
    Tsen-Hsiang Pan
    Chung-Chuan Lo
    Ren-Shuo Liu
    Chih-Cheng Hsieh
    Kea-Tiong Tang
    Mon-Shu Ho
    Chieh-Pu Lo
    Yu-Der Chih
    Tsung-Yung Jonathan Chang
    Meng-Fan Chang
    Nature Electronics, 2023, 6 : 534 - 543
  • [2] A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices
    Cheng-Xin Xue
    Yen-Cheng Chiu
    Ta-Wei Liu
    Tsung-Yuan Huang
    Je-Syu Liu
    Ting-Wei Chang
    Hui-Yao Kao
    Jing-Hong Wang
    Shih-Ying Wei
    Chun-Ying Lee
    Sheng-Po Huang
    Je-Min Hung
    Shih-Hsih Teng
    Wei-Chen Wei
    Yi-Ren Chen
    Tzu-Hsiang Hsu
    Yen-Kai Chen
    Yun-Chen Lo
    Tai-Hsing Wen
    Chung-Chuan Lo
    Ren-Shuo Liu
    Chih-Cheng Hsieh
    Kea-Tiong Tang
    Mon-Shu Ho
    Chin-Yi Su
    Chung-Cheng Chou
    Yu-Der Chih
    Meng-Fan Chang
    Nature Electronics, 2021, 4 : 81 - 90
  • [3] A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices
    Xue, Cheng-Xin
    Chiu, Yen-Cheng
    Liu, Ta-Wei
    Huang, Tsung-Yuan
    Liu, Je-Syu
    Chang, Ting-Wei
    Kao, Hui-Yao
    Wang, Jing-Hong
    Wei, Shih-Ying
    Lee, Chun-Ying
    Huang, Sheng-Po
    Hung, Je-Min
    Teng, Shih-Hsih
    Wei, Wei-Chen
    Chen, Yi-Ren
    Hsu, Tzu-Hsiang
    Chen, Yen-Kai
    Lo, Yun-Chen
    Wen, Tai-Hsing
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Ho, Mon-Shu
    Su, Chin-Yi
    Chou, Chung-Cheng
    Chih, Yu-Der
    Chang, Meng-Fan
    NATURE ELECTRONICS, 2021, 4 (01) : 81 - 90
  • [4] Analog Compute-in-Memory For AI Edge Inference
    Fick, D.
    2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2022,
  • [5] A four-megabit compute-in-memory macro with eight-bit precision based on CMOS and resistive random-access memory for AI edge devices
    Je-Min Hung
    Cheng-Xin Xue
    Hui-Yao Kao
    Yen-Hsiang Huang
    Fu-Chun Chang
    Sheng-Po Huang
    Ta-Wei Liu
    Chuan-Jia Jhang
    Chin-I Su
    Win-San Khwa
    Chung-Chuan Lo
    Ren-Shuo Liu
    Chih-Cheng Hsieh
    Kea-Tiong Tang
    Mon-Shu Ho
    Chung-Cheng Chou
    Yu-Der Chih
    Tsung-Yung Jonathan Chang
    Meng-Fan Chang
    Nature Electronics, 2021, 4 : 921 - 930
  • [6] A four-megabit compute-in-memory macro with eight-bit precision based on CMOS and resistive random-access memory for AI edge devices
    Hung, Je-Min
    Xue, Cheng-Xin
    Kao, Hui-Yao
    Huang, Yen-Hsiang
    Chang, Fu-Chun
    Huang, Sheng-Po
    Liu, Ta-Wei
    Jhang, Chuan-Jia
    Su, Chin-, I
    Khwa, Win-San
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Ho, Mon-Shu
    Chou, Chung-Cheng
    Chih, Yu-Der
    Chang, Tsung-Yung Jonathan
    Chang, Meng-Fan
    NATURE ELECTRONICS, 2021, 4 (12) : 921 - +
  • [7] Reliable Computing of ReRAM Based Compute-in-Memory Circuits for AI Edge Devices
    Chang, Meng-Fan
    Hung, Je-Ming
    Chen, Ping-Cheng
    Wen, Tai-Hao
    2022 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2022,
  • [8] Low-Power 8T SRAM Compute-in-Memory Macro for Edge AI Processors
    Shin, Hye-Ju
    Jo, Sung-Hun
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [9] CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors
    Wei-Hao Chen
    Chunmeng Dou
    Kai-Xiang Li
    Wei-Yu Lin
    Pin-Yi Li
    Jian-Hao Huang
    Jing-Hong Wang
    Wei-Chen Wei
    Cheng-Xin Xue
    Yen-Cheng Chiu
    Ya-Chin King
    Chorng-Jung Lin
    Ren-Shuo Liu
    Chih-Cheng Hsieh
    Kea-Tiong Tang
    J. Joshua Yang
    Mon-Shu Ho
    Meng-Fan Chang
    Nature Electronics, 2019, 2 : 420 - 428
  • [10] CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors
    Chen, Wei-Hao
    Dou, Chunmeng
    Li, Kai-Xiang
    Lin, Wei-Yu
    Li, Pin-Yi
    Huang, Jian-Hao
    Wang, Jing-Hong
    Wei, Wei-Chen
    Xue, Cheng-Xin
    Chiu, Yen-Cheng
    King, Ya-Chin
    Lin, Chorng-Jung
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Yang, J. Joshua
    Ho, Mon-Shu
    Chang, Meng-Fan
    NATURE ELECTRONICS, 2019, 2 (09) : 420 - 428