A Novel Fault Feature Selection and Diagnosis Method for Rotating Machinery With Symmetrized Dot Pattern Representation

被引:15
|
作者
Tang, Gang [1 ]
Hu, Hao [1 ]
Kong, Jian [1 ]
Liu, Haoxiang [1 ]
机构
[1] Beijing Univ Chem Technol, Coll Mech & Elect Engn, Beijing 100029, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Feature extraction; Vibrations; Machinery; Fault diagnosis; Time-frequency analysis; Image texture; Gray-scale; feature ranking; multiscale analysis; optimal class distance ratio; symmetrized dot pattern (SDP); variational mode decomposition (VMD); VARIATIONAL MODE DECOMPOSITION; MULTISCALE ANALYSIS; NEURAL-NETWORK; INFORMATION;
D O I
10.1109/JSEN.2022.3227099
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fault diagnosis methods based on machine learning have made great progress for rotating machinery. The main steps of the machine learning process involve feature extraction, selection, and classification. Feature selection improves classification accuracy and reduces diagnosis time by selecting the better features. Due to the difficulty of traditional feature selection methods to rank the feature importance of each class, the best subset of features could hardly be obtained. Therefore, this article proposes a new feature selection method to address the shortcomings of the above traditional methods, called Feature Ranking based on Optimal Class Distance Ratio (FROCDR), which can choose the optimal features between every two classes of samples to obtain feature ranking that is conducive to classification. In order to comprehensively extract the fault information in the signal, the multiscale analysis and the variational mode decomposition (VMD) method are applied to process the vibration signals under different scales and frequency bands, and the processed signals are visualized by symmetrized dot pattern (SDP). In addition, features are extracted from the obtained SDP images, and the proposed FROCDR method is used to select the best subset of features. The final diagnosis task is accomplished by a random forest (RF) classifier. Experimental cases of bearing and gear data show that the proposed method has higher diagnostic accuracy and stability.
引用
收藏
页码:1447 / 1461
页数:15
相关论文
共 50 条
  • [1] A Novel Method for Fault Diagnosis of Rotating Machinery
    Tang, Meng
    Liao, Yaxuan
    Luo, Fan
    Li, Xiangshun
    ENTROPY, 2022, 24 (05)
  • [2] A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
    Shao Haidong
    Jiang Hongkai
    Zhao Huiwei
    Wang Fuan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 95 : 187 - 204
  • [3] Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method
    Li, Wei
    Zhu, Zhencai
    Jiang, Fan
    Zhou, Gongbo
    Chen, Guoan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 50-51 : 414 - 426
  • [4] Sparse representation learning for fault feature extraction and diagnosis of rotating machinery
    Ma, Sai
    Han, Qinkai
    Chu, Fulei
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 232
  • [5] A Novel End-To-End Feature Selection and Diagnosis Method for Rotating Machinery
    Wang, Gang
    Zhao, Yang
    Zhang, Jiasi
    Ning, Yongjie
    SENSORS, 2021, 21 (06) : 1 - 25
  • [6] Fault Diagnosis of Rotating Machinery Based on Wasserstein Distance and Feature Selection
    Ferracuti, Francesco
    Freddi, Alessandro
    Monteriu, Andrea
    Romeo, Luca
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 1997 - 2007
  • [7] An enhancement deep feature fusion method for rotating machinery fault diagnosis
    Shao, Haidong
    Jiang, Hongkai
    Wang, Fuan
    Zhao, Huiwei
    KNOWLEDGE-BASED SYSTEMS, 2017, 119 : 200 - 220
  • [8] Fault Diagnosis Approach for Rotating Machinery Based on Feature Importance Ranking and Selection
    Yuan, Zong
    Zhou, Taotao
    Liu, Jie
    Zhang, Changhe
    Liu, Yong
    SHOCK AND VIBRATION, 2021, 2021
  • [9] Fault Diagnosis of Rotating Machinery Based on FDR Feature Selection Algorithm and SVM
    Li, Sheng
    Zhang, Chunliang
    Yue, Xia
    MANUFACTURING ENGINEERING AND AUTOMATION I, PTS 1-3, 2011, 139-141 : 2506 - +
  • [10] Intelligent fault diagnosis of rotating machinery based on deep learning with feature selection
    Han, Dongying
    Liang, Kai
    Shi, Peiming
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2020, 39 (04) : 939 - 953