Multifunctional carbon nanotubes-based hybrid aerogels with high-efficiency electromagnetic wave absorption at elevated temperature

被引:18
|
作者
Yang, Feng [1 ,2 ]
Yao, Junru [1 ,2 ]
Shen, Zhou [1 ]
Ma, Qing [1 ,3 ]
Peng, Guiyu [1 ,2 ]
Zhou, Jintang [1 ,2 ]
Yao, Zhengjun [1 ,2 ]
Tao, Xuewei [4 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 211100, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Key Lab Mat Preparat & Protect Harsh Environm, Minist Ind & Informat Technol, Nanjing 211100, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Peoples R China
[4] Nanjing Inst Technol, Sch Mat Sci & Engn, Nanjing 211167, Peoples R China
基金
中国国家自然科学基金;
关键词
Multifunctional aerogel; Electromagnetic wave absorption; Thermal insulation; Sound absorption; Thermal environment; MICROWAVE-ABSORPTION; SOUND-ABSORPTION; COMPOSITES; BAND; LIGHTWEIGHT; OXIDE; ZNO;
D O I
10.1016/j.jcis.2023.02.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the complex engineering applications of electromagnetic (EM) wave-absorbing materials, it is insufficient for these materials to exhibit only efficient EM wave attenuation ability. EM wave-absorbing materials featuring numerous multifunctional properties are increasingly attractive for next-generation wireless communication and smart devices. Herein, we constructed a lightweight and robust multifunctional hybrid aerogel consisting of carbon nanotubes/aramid nanofibers/polyimide with low shrinkage and high porosity. The hybrid aerogels exhibit excellent EM wave attenuation, with an effective absorption bandwidth covering the entire X-band from 25 degrees C to 400 degrees C. The conductive loss capacity of the hybrid aerogel is enhanced under thermal drive, which results in an enhanced ability to attenuate EM waves, as evidenced by the fact that the best-fit thickness drops from 5.3 to 3.6 mm with increasing tem-perature. In addition, the hybrid aerogels are capable to efficiently absorb sound waves, with an average absorption coefficient as high as 0.86 at 1-6.3 kHz, and they exhibit superior thermal insulation proper-ties, with a thermal conductivity as low as 41 +/- 2 mW/mK. They are thus suitable for applications in the anti-icing and infrared stealth fields. The prepared multifunctional aerogels have considerable potential for EM protection, noise reduction, and thermal insulation in harsh thermal environments.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:843 / 854
页数:12
相关论文
共 50 条
  • [1] Facile fabrication of biomass chitosan-derived magnetic carbon aerogels as multifunctional and high-efficiency electromagnetic wave absorption materials
    Wang, Shijie
    Zhang, Xue
    Tang, Yunxiang
    Hao, Shuyan
    Zheng, Sinan
    Qiao, Jing
    Wang, Zhou
    Wu, Lili
    Liu, Jiurong
    Wang, Fenglong
    CARBON, 2024, 216
  • [2] Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures
    Kong, Luo
    Yin, Xiaowei
    Han, Meikang
    Zhang, Litong
    Cheng, Laifei
    CERAMICS INTERNATIONAL, 2015, 41 (03) : 4906 - 4915
  • [3] Multifunctional Nanocellulose/Carbon Nanotube Composite Aerogels for High-Efficiency Electromagnetic Interference Shielding
    Zhu, Ge
    Isaza, Laura Giraldo
    Huang, Bai
    Dufresne, Alain
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (07): : 2397 - 2408
  • [4] Multifunctional Nanocellulose/Carbon Nanotube Composite Aerogels for High-Efficiency Electromagnetic Interference Shielding
    Zhu, Ge
    Giraldo Isaza, Laura
    Huang, Bai
    Dufresne, Alain
    ACS Sustainable Chemistry and Engineering, 2022, 10 (07): : 2397 - 2408
  • [5] Multiple tuned carbon nanotubes by rare earth oxides for high-efficiency electromagnetic wave absorption
    Gao, Han
    Qin, Long
    Tao, Shifei
    Xiong, Ziming
    Wu, Fan
    Lei, Ming
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (05)
  • [6] Multifunctional carbon aerogels loaded with pea-pod-like carbon nanotubes for outstanding electromagnetic wave absorption performance
    Zhu, Shengyin
    Zhou, Yuming
    Lv, Xuelian
    Li, Haoyuan
    Feng, Mingxin
    Li, Zhonghui
    He, Man
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 669 : 23 - 31
  • [7] Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption
    Song, Limeng
    Wu, Chengwen
    Zhi, Qing
    Zhang, Fan
    Song, Bozhen
    Guan, Li
    Chen, Yongqiang
    Wang, Hailong
    Zhang, Rui
    Fan, Bingbing
    CHEMICAL ENGINEERING JOURNAL, 2023, 467
  • [8] Bio-based multifunctional carbon aerogels for ultrawide electromagnetic wave absorption and thermal insulation
    Han, Xiaojiao
    Feng, Yifei
    Zhang, Na
    Du, Wei
    Zhang, Wenli
    Yu, Qingqing
    Liu, Yifan
    Wang, Bin
    Jiang, Fuyi
    Liu, Liyuan
    Xu, Lina
    Zhang, Xiaoyu
    CARBON, 2025, 238
  • [9] Surfactant-induced morphology engineering in chitosan-derived carbon aerogels realizing high-efficiency absorption of electromagnetic wave
    Chang, Qing
    Xie, Zijun
    Yang, Sizhe
    Duan, Yujin
    Shi, Bin
    Wu, Hongjing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 995
  • [10] Heterostructure tailoring of carbon nanotubes grown on prismatic NiCo clusters for high-efficiency electromagnetic absorption
    Xu, Jiajun
    Bian, Chao
    Sun, Jiayu
    Liu, Dong
    Wang, Xiaobin
    Xue, Zhiwei
    Meng, Xiuxia
    Wu, Hongjing
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 634 : 185 - 194