Modulating Nonluminous 0D (NH4)2SnCl6 Perovskites by Metal Ion Doping

被引:7
|
作者
Li, Zhilin [1 ]
Li, Qiaoqiao [2 ,3 ]
Cao, Mengyan [1 ]
Zhou, Liujiang [2 ,3 ]
Zhao, Xiujian [1 ]
Gong, Xiao [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China
[3] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 19期
基金
中国国家自然科学基金;
关键词
39;
D O I
10.1021/acs.jpcc.3c01455
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal halide perovskite materials have highly attracted wide attention for lighting applications because of their unique optoelectronic properties. However, the complex prepara-tion processes and the toxicity of lead have limited their practical applications. There are few reports on zero-dimensional (0D) organic/inorganic tin-based perovskites with both good stability and a high photoluminescence quantum yield (PLQY). Here, Sb3+ doping and Bi3+ doping of 0D (NH4)2SnCl6 perovskite powders are reported. Sb3+ doping of 0D (NH4)2SnCl6 perovskites shows wide emission peaks at 530 and 640 nm with a PLQY of up to 17.03%, while Bi3+ doping of 0D (NH4)2SnCl6 perovskites exhibits a broad blue emission at 460 nm with a PLQY of 4.40%. Combining experimental results and theoretical calculations, we propose that the mechanism of Sb3+ ion doping of 0D (NH4)2SnCl6 perovskites is a P1 -> 1S0 transition (singlet) at 530 nm and a 3P1 -> 1S0 transition (triplet) at 640 nm. However, the mechanism of Bi3+ ion doping of 0D (NH4)2SnCl6 perovskites is a 3P1 -> 1S0 transition at 460 nm. In addition, both metal ion dopings of 0D (NH4)2SnCl6 perovskites have good air and thermal stability. We demonstrate that the Sb3+ doping and Bi3+ doping of 0D (NH4)2SnCl6 perovskite phosphors have great potential for solid-state lighting.
引用
收藏
页码:9354 / 9361
页数:8
相关论文
共 50 条