Tannic acid as a binder and electronic conductor precursor in silicon electrodes for Li-ion batteries

被引:3
|
作者
Kana, Nassima [1 ]
Olivier-Archambaud, Sarah [1 ]
Devic, Thomas [1 ]
Lestriez, Bernard [1 ]
机构
[1] Nantes Univ, Inst Mat Nantes Jean Rouxel, CNRS, IMN, F-44000 Nantes, France
关键词
Li-ion battery; Si electrode; Tannic acid; Binder; Conducting additive; Electrochemical performances; SI-BASED ANODES; NEGATIVE ELECTRODES; COMPOSITE ELECTRODES; POLYACRYLIC-ACID; PERFORMANCE;
D O I
10.1016/j.elecom.2023.107495
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
State of-the-art Si electrodes for Li-ion batteries typically require the addition of an advanced polymeric binder and a conductive carbon additive to the active material in order to circumvolve the issues associated with silicon, namely its poor conductivity in the oxidized state, and its high volume variation upon lithiation which give rise to several failure mechanisms. Here, we demonstrate that both additives can be replaced by a cheap, naturally available, polyphenol, tannic acid (TA). We show that Si/TA electrodes (80/20 wt%), even with a high loading (similar to 2 mg_(Si) cm(-2)), can retain a specific capacity above 2000 mAh g(-1) after 50 cycles. This unexpected result appears to result from the irreversible reduction of TA during the first cycle, into a conducting, likely polymeric, species.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Understanding Polyacrylic Acid and Lithium Polyacrylate Binder Behavior in Silicon Based Electrodes for Li-Ion Batteries
    Porcher, W.
    Chazelle, S.
    Boulineau, A.
    Mariage, N.
    Alper, J. P.
    van Rompaey, T.
    Bridel, J. -S.
    Haon, C.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (14) : A3633 - A3640
  • [2] Binder-Free Electrodes and Their Application for Li-Ion Batteries
    Kang, Yuqiong
    Deng, Changjian
    Chen, Yuqing
    Liu, Xinyi
    Liang, Zheng
    Li, Tao
    Hu, Quan
    Zhao, Yun
    NANOSCALE RESEARCH LETTERS, 2020, 15 (01):
  • [3] Binder-Free Electrodes and Their Application for Li-Ion Batteries
    Yuqiong Kang
    Changjian Deng
    Yuqing Chen
    Xinyi Liu
    Zheng Liang
    Tao Li
    Quan Hu
    Yun Zhao
    Nanoscale Research Letters, 15
  • [4] On the Lithiation Mechanism of Amorphous Silicon Electrodes in Li-Ion Batteries
    Uxa, Daniel
    Jerliu, Bujar
    Hueger, Erwin
    Doerrer, Lars
    Horisberger, Michael
    Stahn, Jochen
    Schmidt, Harald
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (36): : 22027 - 22039
  • [5] Nanostructured Silicon Thin Film Electrodes for Li-Ion Batteries
    Tocoglu, U.
    Cetinkaya, T.
    Cevher, O.
    Guler, M. Oguz
    Akbulut, H.
    ACTA PHYSICA POLONICA A, 2013, 123 (02) : 380 - 382
  • [6] Negative electrodes for Li-ion batteries
    Kinoshita, K
    Zaghib, K
    JOURNAL OF POWER SOURCES, 2002, 110 (02) : 416 - 423
  • [7] Measurements of the Fracture Energy of Lithiated Silicon Electrodes of Li-Ion Batteries
    Pharr, Matt
    Suo, Zhigang
    Vlassak, Joost J.
    NANO LETTERS, 2013, 13 (11) : 5570 - 5577
  • [8] Olivine Materials for Positive Electrodes in Li-ion Batteries: Electronic Properties
    Julien, C. M.
    Mauger, A.
    Zaghib, K.
    Groult, H.
    INTERCALATION COMPOUNDS FOR RECHARGEABLE BATTERIES, 2013, 50 (24): : 97 - 101
  • [9] Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries
    Chockla, Aaron M.
    Bogart, Timothy D.
    Hessel, Colin M.
    Klavetter, Kyle C.
    Mullins, C. Buddie
    Korgel, Brian A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (34): : 18079 - 18086
  • [10] Sodium carboxymethyl cellulose - A potential binder for Si negative electrodes for Li-ion batteries
    Li, Jing
    Lewis, R. B.
    Dahn, J. R.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (02) : A17 - A20