TiO2/KNbO3 nanocomposite for enhanced humidity sensing performance

被引:7
|
作者
Wang, Jingsong [1 ]
Zhao, Bing [2 ]
Wang, Chunchang [1 ]
机构
[1] Anhui Univ, Sch Phys & Mat Sci, Lab Dielectr Funct Mat, Hefei 230601, Peoples R China
[2] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Humidity sensor; Impedance; Hydrothermal method; Nanocomposite; TiO2; KNbO3; HIGH-SENSITIVITY; SENSOR; TIO2; POLYELECTROLYTE; NANOSHEETS; TEMPERATURE; FABRICATION; FILM;
D O I
10.1016/j.sna.2022.114057
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
TiO2/KNbO3 nanocomposite was prepared by a two-step hydrothermal method. Impedance-type sensors based on TiO2/KNbO3, TiO2, and KNbO3, were fabricated by aerosol deposition method. The humidity sensing prop-erties were investigated in a relative humidity range of 11-95%. Our results reveal that the TiO2/KNbO3-based sensor shows a large impedance change over 5 orders of magnitude, which is 1-2 orders of magnitude larger than that of TiO2- and KNbO3-based sensors. A fast response time of 3 s and a relatively long recovery time of 163 s were obtained for the TiO2/KNbO3-based sensor. The boosted humidity sensing performance of the TiO2/KNbO3 nanocomposite is believed to be due to the combined effect of the heterojunction at the TiO2/KNbO3 interface and the Grotthuss mechanism. This work underscores that the two-step hydrothermal method would be a powerful method for fabricating high-purity nanocomposites with excellent humidity sensing performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] TiO2 as a sintering additive for KNbO3 ceramics
    Makovec, Darko
    Pribosic, Irena
    Drofenik, Miha
    CERAMICS INTERNATIONAL, 2008, 34 (01) : 89 - 94
  • [2] Enhanced Relative Humidity Sensing Performance Using TiO2 Loaded SiO2 Nanocomposite
    Chaudhary, Vandna
    Malik, Ritu
    Tomer, Vijay K.
    Nehra, S. P.
    Duhan, Surender
    ENERGY AND ENVIRONMENT FOCUS, 2016, 5 (03) : 234 - 239
  • [3] Enhanced ultraviolet photo-detecting by constructing TiO2/KNbO3 heterojunction
    Song, Jianqiao
    Bai, Zhaowen
    Wang, Gang
    Li, Jiang
    Zhang, Xinmiao
    Jin, Mengjing
    Zhao, Haixing
    Chang, Peng
    Pan, Xiaojun
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (12)
  • [4] Dielectric and Thermal Analyses of TiO2 Doped KNbO3 Single Crystals
    Patil, N. M.
    Shamkuwar, S. H.
    Korde, V. B.
    ADVANCED SCIENCE LETTERS, 2016, 22 (11) : 3837 - 3839
  • [5] Enhanced photocatalytic performance of TiO2–carbon nanocomposite
    A. R. Kuldeep
    A. S. Bhosale
    K. M. Garadkar
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 9006 - 9017
  • [6] TiO2/(K,Na)NbO3 Nanocomposite for Boosting Humidity-Sensing Performances
    Si, Renjun
    Xie, Xiujuan
    Li, Tianyu
    Zheng, Jun
    Cheng, Chao
    Huang, Shouguo
    Wang, Chunchang
    ACS SENSORS, 2020, 5 (05): : 1345 - 1353
  • [7] Gradient-structure-enhanced dielectric energy storage performance of flexible nanocomposites containing controlled preparation of defective TiO2 and ferroelectric KNbO3 nanosheets
    Wang, Yan
    Zhao, Lili
    Chen, Ruicong
    Zhao, Wenhui
    Hu, Dengwei
    Wang, Haoran
    Cui, Bin
    NANO RESEARCH, 2024, 17 (05) : 4079 - 4088
  • [8] Gradient-structure-enhanced dielectric energy storage performance of flexible nanocomposites containing controlled preparation of defective TiO2 and ferroelectric KNbO3 nanosheets
    Yan Wang
    Lili Zhao
    Ruicong Chen
    Wenhui Zhao
    Dengwei Hu
    Haoran Wang
    Bin Cui
    Nano Research, 2024, 17 : 4079 - 4088
  • [9] MoS2 compounded bidirectionally with TiO2 for hydrogen evolution reaction with enhanced humidity sensing performance
    Chen, Xiaofan
    Hu, Haoqi
    Feng, Yu
    Peng, Deyan
    Li, Bo
    Fu, Hao
    Guo, Bangjun
    Lei, Xiang
    Yu, Ke
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 82 : 75 - 81
  • [10] Enhanced Critical Current Density and Flux Pinning in KNbO3: YBCO Nanocomposite Thin Films
    Kumar, Gaurav
    Khare, Neeraj
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2025, 38 (01)