Coupling effect of radiative cooling and phase change material on building wall thermal performance

被引:11
|
作者
Zhang, Zhaoli [1 ]
Liu, Jiayu [1 ]
Zhang, Nan [1 ]
Cao, Xiaoling [1 ]
Yuan, Yanping [1 ,2 ]
Sultan, Muhammad [3 ]
Attia, Shady [4 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
[2] Chongqing Univ Sci & Technol, Sch Civil Engn & Architecture, Chongqing 401331, Peoples R China
[3] Bahauddin Zakariya Univ, Dept Agr Engn, Multan 60800, Pakistan
[4] Univ Liege, Fac Appl Sci, Dept UEE, Sustainable Bldg Design Lab, B-4000 Liege, Belgium
来源
基金
中国国家自然科学基金;
关键词
Radiative cooling; Phase change material; Coupling effect; Multilayer wall; Building energy conservation; HYBRID SYSTEM;
D O I
10.1016/j.jobe.2023.108344
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Phase change material (PCM) featured with high latent heat thermal energy storage capacity and isothermal phase transition is employed into building walls decorated with radiative cooling (RC) coating, in order to modify the cooling effect on building thermal performance. Numerical analysis indicates that the RC coating causes exterior temperature of P-RC walls lower than ambient temperature, achieving maximum exterior temperature drop of 13.63 degrees C. Thermal buffer effect of PCM enables to shave the temperature peak and shift the temperature valley, inducing exterior temperature of the P-RC wall to fluctuate slightly in comparison to the RC wall. Interior temperature of the P-RC wall is found to approach to target temperature tightly. PCM located closer to the outside completes phase transition more rapidly, which is beneficial to levelling radiative cooling of RC coating. Exterior temperature of P-RC walls increases with augment of solar radiation intensity, ambient temperature and indoor temperature. Augment of PCM thickness, ambient temperature or indoor temperature is conducive to interior temperature. Latent heat thermal energy storage of PCM enlarges effective thermal capacity of walls, which is favorable to maintain interior temperature within target temperature. In conclusion, studied results highlight that radiation cooling can be improved by PCM, with substantial benefits to develop passive cooling available to building energy conservation.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Investigation on the thermal performance of the novel phase change materials wall with radiative cooling
    Shen, Dongmei
    Yu, Cairui
    Wang, Wanfen
    APPLIED THERMAL ENGINEERING, 2020, 176
  • [2] Numerical study on the thermal performance of phase change materials wall by radiative cooling
    Yu, Cairui
    Shen, Dongmei
    Wang, Wanfen
    Song, Xinwei
    Xin, Jin
    Cai, Luxiu
    Tu, Jinsong
    APPLIED THERMAL ENGINEERING, 2022, 215
  • [3] Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application
    Kong, Xiangfei
    Lu, Shilei
    Li, Yiran
    Huang, Jingyu
    Liu, Shangbao
    Energy and Buildings, 2014, 81 : 404 - 415
  • [4] Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application
    Kong, Xiangfei
    Lu, Shilei
    Li, Yiran
    Huang, Jingyu
    Liu, Shangbao
    ENERGY AND BUILDINGS, 2014, 81 : 404 - 415
  • [5] Numerical study on the thermal performance of building wall and roof incorporating phase change material panel for passive cooling application
    Kong, Xiangfei
    Lu, Shilei
    Li, Yiran
    Huang, Jingyu
    Liu, Shangbao
    Energy and Buildings, 2014, 81 : 404 - 415
  • [6] Exploring the thermal shielding performance by coupling phase change material to liquid cooling plate
    Liu, Xianfei
    Zhao, Doudou
    Wang, Fang
    Zhang, Hui
    Liu, Yuhang
    Jia, Zijuan
    Zhou, Wenkang
    Li, Yifan
    JOURNAL OF ENERGY STORAGE, 2024, 91
  • [7] Thermal performance of phase change material embedded in building Wall- a numerical analysis
    Gopinath, G. R.
    Muthuvel, S.
    Dinesh, N.
    Karthikeyan, G.
    Haashim, A.
    MATERIALS TODAY-PROCEEDINGS, 2022, 66 : 712 - 716
  • [8] Effect of key parameters on the transient thermal performance of a building envelope with Trombe wall containing phase change material
    Zhou, Shiqiang
    Bai, Fan
    Razaqpur, Ghani
    Wang, Bing
    ENERGY AND BUILDINGS, 2023, 284
  • [9] Study of thermal performance of building using glass curtain wall with phase change material (PCM)
    Liu, Ran
    Cui, Hongzhi
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INFORMATION ENGINEERING FOR MECHANICS AND MATERIALS, 2015, 21 : 811 - 817
  • [10] Enhancing building wall thermal performance with phase change material and insulation: A comparative and synergistic assessment
    Tuncbilek, Ekrem
    Arici, Muslum
    Krajcik, Michal
    Li, Dong
    Nizetic, Sandro
    Papadopoulos, Agis M.
    RENEWABLE ENERGY, 2023, 218