Nonlinear Ringdown at the Black Hole Horizon

被引:14
|
作者
Khera, Neev [1 ]
Metidieri, Ariadna Ribes [2 ]
Bonga, Beatrice [2 ]
Forteza, Xisco Jimenez [3 ,4 ,5 ,6 ]
Krishnan, Badri [2 ,3 ,4 ]
Poisson, Eric [1 ]
Pook-Kolb, Daniel [2 ,3 ,4 ]
Schnetter, Erik [7 ,8 ,9 ]
Yang, Huan [1 ,7 ]
机构
[1] Univ Guelph, Guelph, ON N1G 2W1, Canada
[2] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[3] Albert Einstein Inst, Max Planck Inst Gravitationsphy, Callinstr 38, D-30167 Hannover, Germany
[4] Leibniz Univ Hannover, D-30167 Hannover, Germany
[5] Nikhef, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands
[6] Univ Utrecht, Inst Gravitat & Subat Phys GRASP, Princetonpl 1, NL-3584 CC Utrecht, Netherlands
[7] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[8] Univ Waterloo, Dept Phys & Astron, Waterloo, ON, Canada
[9] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
关键词
QUASI-NORMAL MODES; GRAVITATIONAL-WAVES; GENERAL-RELATIVITY; SPECTROSCOPY; ENERGY; TESTS;
D O I
10.1103/PhysRevLett.131.231401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The gravitational waves emitted by a perturbed black hole ringing down are well described by damped sinusoids, whose frequencies are those of quasinormal modes. Typically, first-order black hole perturbation theory is used to calculate these frequencies. Recently, it was shown that second-order effects are necessary in binary black hole merger simulations to model the gravitational-wave signal observed by a distant observer. Here, we show that the horizon of a newly formed black hole after the head-on collision of two black holes also shows evidence of nonlinear modes. Specifically, we identify one quadratic mode for the l = 2 shear data, and two quadratic ones for the l = 4, 6 data in simulations with varying mass ratio and boost parameter. The quadratic mode amplitudes display a quadratic relationship with the amplitudes of the linear modes that generate them.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Nonlinear Effects in Black Hole Ringdown
    Cheung, Mark Ho-Yeuk
    Baibhav, Vishal
    Berti, Emanuele
    Cardoso, Vitor
    Carullo, Gregorio
    Cotesta, Roberto
    Del Pozzo, Walter
    Duque, Francisco
    Helfer, Thomas
    Shukla, Estuti
    Wong, Kaze W. K.
    PHYSICAL REVIEW LETTERS, 2023, 130 (08)
  • [2] Nonlinear Treatment of a Black Hole Mimicker Ringdown
    Siemonsen, Nils
    PHYSICAL REVIEW LETTERS, 2024, 133 (03)
  • [3] Nonlinear effect of absorption on the ringdown of a spinning black hole
    May, Taillte
    Ma, Sizheng
    Ripley, Justin L.
    East, William E.
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [4] Implications of the quantum nature of the black hole horizon on the gravitational-wave ringdown
    Chakraborty, Sumanta
    Maggio, Elisa
    Mazumdar, Anupam
    Pani, Paolo
    PHYSICAL REVIEW D, 2022, 106 (02)
  • [5] Nonlinear effects in the black hole ringdown: Absorption-induced mode excitation
    Sberna, Laura
    Bosch, Pablo
    East, William E.
    Green, Stephen R.
    Lehner, Luis
    PHYSICAL REVIEW D, 2022, 105 (06)
  • [6] Black Hole Ringdown: The Importance of Overtones
    Giesler, Matthew
    Isi, Maximiliano
    Scheel, Mark A.
    Teukolsky, Saul A.
    PHYSICAL REVIEW X, 2019, 9 (04):
  • [7] Black hole ringdown echoes and howls
    Nakano, Hiroyuki
    Sago, Norichika
    Tagoshi, Hideyuki
    Tanaka, Takahiro
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2017, 2017 (07):
  • [8] Nonlinear effects in black hole ringdown made simple: Quasinormal modes as adiabatic modes
    Kehagias, A.
    Riotto, A.
    PHYSICAL REVIEW D, 2025, 111 (04)
  • [9] Scale invariant gravity and black hole ringdown
    Ferreira, Pedro G.
    Tattersall, Oliver J.
    PHYSICAL REVIEW D, 2020, 101 (02)
  • [10] Black hole ringdown as a probe for dark energy
    Noller, Johannes
    Santoni, Luca
    Trincherini, Enrico
    Trombetta, Leonardo G.
    PHYSICAL REVIEW D, 2020, 101 (08)