Learning Perceptual Hallucination for Multi-Robot Navigation in Narrow Hallways

被引:3
|
作者
Park, Jin-Soo [1 ]
Xiao, Xuesu [2 ,3 ]
Warnell, Garrett [4 ,5 ]
Yedidsion, Harel [4 ]
Stone, Peter [4 ,6 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
[2] George Mason Univ, Dept Comp Sci, Fairfax, VA 22030 USA
[3] Everyday Robots, San Francisco, CA USA
[4] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
[5] Army Res Lab, Washington, DC USA
[6] Sony AI, Tokyo, Japan
关键词
COLLISION-AVOIDANCE;
D O I
10.1109/ICRA48891.2023.10161327
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
While current systems for autonomous robot navigation can produce safe and efficient motion plans in static environments, they usually generate suboptimal behaviors when multiple robots must navigate together in confined spaces. For example, when two robots meet each other in a narrow hallway, they may either turn around to find an alternative route or collide with each other. This paper presents a new approach to navigation that allows two robots to pass each other in a narrow hallway without colliding, stopping, or waiting. Our approach, Perceptual Hallucination for Hallway Passing (PHHP), learns to synthetically generate virtual obstacles (i.e., perceptual hallucination) to facilitate passing in narrow hallways by multiple robots that utilize otherwise standard autonomous navigation systems. Our experiments on physical robots in a variety of hallways show improved performance compared to multiple baselines.
引用
收藏
页码:10033 / 10039
页数:7
相关论文
共 50 条
  • [1] Learning Decentralized Multi-Robot PointGoal Navigation
    Soualhi, Takieddine
    Crombez, Nathan
    Ruichek, Yassine
    Lombard, Alexandre
    Galland, Stephane
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2025, 10 (04): : 4117 - 4124
  • [2] A strategy for multi-robot navigation
    Beji, Lotfi
    ElKamel, Mohamed
    Abichou, Azgal
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 4214 - 4219
  • [3] Hierarchical Multi-Robot Pursuit with Deep Reinforcement Learning and Navigation Planning
    Chen, Wenzhang
    Zhu, Yuanheng
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1274 - 1280
  • [4] Connectivity Guaranteed Multi-robot Navigation via Deep Reinforcement Learning
    Lin, Juntong
    Yang, Xuyun
    Zheng, Peiwei
    Cheng, Hui
    CONFERENCE ON ROBOT LEARNING, VOL 100, 2019, 100
  • [5] Cooperative Multi-Robot Navigation in Dynamic Environment with Deep Reinforcement Learning
    Han, Ruihua
    Chen, Shengduo
    Hao, Qi
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 448 - 454
  • [6] Obtaining Robust Control and Navigation Policies for Multi-robot Navigation via Deep Reinforcement Learning
    Jestel, Christian
    Surmann, Harmtmut
    Stenzel, Jonas
    Urbann, Oliver
    Brehler, Marius
    2021 7TH INTERNATIONAL CONFERENCE ON AUTOMATION, ROBOTICS AND APPLICATIONS (ICARA 2021), 2021, : 48 - 54
  • [7] LOCAL DISTRIBUTED CONTROL FOR MULTI-ROBOT NAVIGATION
    Terrones, A.
    Acuna, R.
    Certad, N.
    Fermin-Leon, L.
    Fernandez-Lopez, G.
    ADAPTIVE MOBILE ROBOTICS, 2012, : 797 - 804
  • [8] Experiments in Cooperative Human Multi-Robot Navigation
    Saez-Pons, Joan
    Alboul, Lyuba
    Penders, Jacques
    2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,
  • [9] Towards decentralization of multi-robot navigation functions
    Tanner, HG
    Kumar, A
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 4132 - 4137
  • [10] An application of relative localisation for multi-robot navigation
    Schneider, FE
    Wildermuth, D
    Proceedings of the Second IASTED International Multi-Conference on Automation, Control, and Information Technology - Automation, Control, and Applications, 2005, : 344 - 349