Reaction mechanisms of (RE0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (RE = La or Yb) under CaO-MgO-Al2O3-SiO2 (CMAS) attack

被引:6
|
作者
Zhou, Ming [1 ,2 ]
Zhang, Han [1 ]
Yang, Guojie [2 ]
Chen, Ying [3 ,4 ]
Shan, Xiao [1 ]
Li, Hantao [2 ]
Luo, Lirong [1 ]
Zhao, Xiaofeng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai Key Lab Adv High Temp Mat & Precis Formin, Shanghai 200240, Peoples R China
[2] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China
[3] Univ Manchester, Dept Mat, Manchester M13 9PL, England
[4] Univ Manchester, Henry Royce Inst, Manchester M13 9PL, England
基金
中国国家自然科学基金;
关键词
High entropy ceramics; CMAS; Thermal barrier coatings; Rare earth zirconates; THERMAL BARRIER COATINGS; CONDUCTIVITY; CORROSION; TEMPERATURE; RESISTANCE; ZIRCONATE; GD2ZR2O7; APATITE;
D O I
10.1016/j.jeurceramsoc.2024.01.014
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, two high-entropy ceramics, namely (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 (LaHZ) and (Nd0.2Sm0.2Eu0.2Gd0.2Yb0.2)2Zr2O7 (YbHZ), were prepared and investigated, in comparison to La2Zr2O7 (LZ). This investigation focused on their interactions with calcium-magnesium-alumina-silicate (CMAS), revealing noteworthy findings. High entropy samples particularly YbHZ exhibit significantly reduced infiltration depths compared to LZ. After CMAS corrosion, the reaction zones of LaHZ and LZ show a similar microstructure characterized by the presence of apatite and fluorite embedded in CMAS residue. In contrast, YbHZ forms a dense and nanoscale dual-phase zirconia (fluorite + pyrochlore) layer, with no visible CMAS residue. The different corrosion behavior is associated with the competition between fluorite and apatite phases, which is strongly related to the ionic radius of RE3+. Apart from the apatite, the formation of a dense and continuous fluorite Ca&RE-ZrO2 layer could also provide excellent CMAS resistance. These findings provide a viable strategy for designing CMAS-resistant materials.
引用
收藏
页码:4055 / 4063
页数:9
相关论文
共 50 条
  • [1] Unraveling the corrosion mechanism of high entropy Yb2(Zr0.2Hf0.2Ti0.2Sn0.2Ce0.2)2O7 under CaO-MgO-Al2O3-SiO2 (CMAS) attack
    Wang, Panpan
    Li, Muzhi
    He, Junjie
    Shan, Xiao
    Luo, Lirong
    Zhao, Xiaofeng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (01)
  • [2] Flash joining of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy ceramic to 3YSZ
    Cao, Yue
    Xu, Guo-Cheng
    Shen, Ping
    CERAMICS INTERNATIONAL, 2024, 50 (21) : 41956 - 41961
  • [3] Ultrafast densification of high-entropy oxide (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 by reactive flash sintering
    Mao, Hai-Rong
    Guo, Rui-Fen
    Cao, Yue
    Jin, Shen-Bao
    Qiu, Xiao-Ming
    Shen, Ping
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (04) : 2855 - 2860
  • [4] The irradiation resistance and mechanical properties of the high-entropy zirconate pyrochlore (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7
    Wang, Zezhen
    Zhou, Liangfu
    Liu, Chenguang
    Li, Yuhong
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2024, 549
  • [5] 真空烧结制备(La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7高熵透明陶瓷
    曾建军
    张魁宝
    陈代梦
    郭海燕
    邓婷
    刘奎
    无机材料学报, 2021, 36 (04) : 418 - 424
  • [6] Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder
    Zhang, Kuibao
    Li, Weiwei
    Zeng, Jianjun
    Deng, Ting
    Luo, Baozhu
    Zhang, Haibin
    Huang, Xuegang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 817
  • [7] Enhancement of high entropy oxide (La0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 mechanical and photocatalytic properties via Eu doping
    Shixin Liu
    Mingrun Du
    Yanfeng Ge
    Zepeng Li
    Gyaneshwar P. Srivastava
    Jinhua Wang
    Tong Wei
    Yunling Zou
    Xiaodong Li
    Yanchun Li
    Mingchao Wang
    Journal of Materials Science, 2022, 57 : 7863 - 7876
  • [8] Enhancement of high entropy oxide (La0.2Nd0.2Sm0.2Gd0.2Y0.2)2Zr2O7 mechanical and photocatalytic properties via Eu doping
    Liu, Shixin
    Du, Mingrun
    Ge, Yanfeng
    Li, Zepeng
    Srivastava, Gyaneshwar P.
    Wang, Jinhua
    Wei, Tong
    Zou, Yunling
    Li, Xiaodong
    Li, Yanchun
    Wang, Mingchao
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (16) : 7863 - 7876
  • [9] CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials
    Lin, Guangqiang
    Wang, Yanli
    Yang, Lingxu
    Sun, Rongfa
    Wu, Liankui
    Zhang, Xiaofeng
    Liu, Huijun
    Zeng, Chaoliu
    CORROSION SCIENCE, 2023, 224
  • [10] Characterization of novel high-entropy (La0.2Nd0.2Sm0.2Dy0.2Yb0.2)2Zr2O7 electrospun ceramic nanofibers
    Li, Zeshuai
    Zhou, Feifei
    Xu, Baosheng
    Guo, Donghui
    CERAMICS INTERNATIONAL, 2022, 48 (09) : 12074 - 12078