SOME NEW FRACTIONAL INTEGRAL INEQUALITIES FOR (h1, h2)-CONVEX FUNCTIONS

被引:0
|
作者
Han, Xiaoyue [1 ]
Xu, Run [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu, Peoples R China
来源
关键词
(h(1); h(2))-convex functions; h(2))-concave functions; Hermite-Hadamard integral inequalities; Hermite-Hadamard-Fejer integral inequalities; Atangana-Baleanu integral operators; FEJER TYPE INEQUALITIES; CONVEX-FUNCTIONS;
D O I
10.3934/mfc.2023040
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, some Hermite-Hadamard integral inequalities and Hermite-Hadamard-Fejer integral inequalities involving AtanganaBaleanu fractional integral operators via (h(1), h(2))-convex functions and (h(1), h(2))-concave functions are established. Then, according to an integral equation with AtanganaBaleanu fractional integral operators, some Hermite-Hadamard integral inequalities for second order differentiable convex maps are given.
引用
收藏
页码:89 / 112
页数:24
相关论文
共 50 条
  • [1] Hermite-Hadamard-Type Inequalities via Caputo-Fabrizio Fractional Integral for h-Godunova-Levin and (h1, h2)-Convex Functions
    Afzal, Waqar
    Abbas, Mujahid
    Hamali, Waleed
    Mahnashi, Ali M.
    De la Sen, M.
    FRACTAL AND FRACTIONAL, 2023, 7 (09)
  • [2] Hermite-Hadamard Type Inequalities for Interval (h1, h2)-Convex Functions
    An, Yanrong
    Ye, Guoju
    Zhao, Dafang
    Liu, Wei
    MATHEMATICS, 2019, 7 (05)
  • [3] Some New Generalizations of Integral Inequalities for Harmonical cr-(h1,h2)-Godunova-Levin Functions and Applications
    Saeed, Tareq
    Afzal, Waqar
    Abbas, Mujahid
    Treanta, Savin
    De la sen, Manuel
    MATHEMATICS, 2022, 10 (23)
  • [4] Generalized local fractional integral inequalities via generalized (h1,h2)-preinvexity on fractal sets
    Al-Sa'di, Sa'ud
    Bibi, Maria
    Muddassar, Muhammad
    Budak, Huseyin
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2025,
  • [5] Some Inequalities for LR-(h1, h2)-Convex Interval-Valued Functions by Means of Pseudo Order Relation
    Khan, Muhammad Bilal
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Nisar, Kottakkaran Sooppy
    Ismail, Khadiga Ahmed
    Elfasakhany, Ashraf
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01)
  • [6] Approximately two-dimensional harmonic (p1, h1)-(p2, h2)-convex functions and related integral inequalities
    Butt, Saad Ihsan
    Kashuri, Artion
    Nadeem, Muhammad
    Aslam, Adnan
    Gao, Wei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [7] On some fractional integral inequalities for generalized strongly modified h-convex functions
    Yan, Peiyu
    Li, Qi
    Chu, Yu Ming
    Mukhtar, Sana
    Waheed, Shumaila
    AIMS MATHEMATICS, 2020, 5 (06): : 6620 - 6638
  • [8] Extended Hermite-Hadamard (H - H) and Fejer's inequalities based on (h1, h2, s)-convex functions
    Yasin, Sabir
    Misiran, Masnita
    Omar, Zurni
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2885 - 2895
  • [9] Fractional Integral Inequalities for Some Convex Functions
    Bayraktar, B. R.
    Attaev, A. Kh
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 104 (04): : 14 - 27
  • [10] Some new general integral inequalities for h-convex and h-concave functions
    Iscan, Imdat
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2014, 5 (01) : 21 - 29