Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria

被引:21
|
作者
Collias, Daphne [1 ,2 ]
Vialetto, Elena [1 ]
Yu, Jiaqi [1 ]
Co, Khoa [1 ]
Almasi, Eva D. H. [3 ]
Ruettiger, Ann-Sophie [1 ]
Achmedov, Tatjana [1 ]
Strowig, Till [3 ,4 ]
Beisel, Chase L. [1 ,2 ,5 ]
机构
[1] Helmholtz Ctr Infect Res HZI, Helmholtz Inst RNA based Infect Res HIRI, D-97080 Wurzburg, Germany
[2] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA
[3] Helmholtz Ctr Infect Res HZI, D-38124 Braunschweig, Germany
[4] German Ctr Infect Res DZIF, Partner Site Hannover Braunschweig, Braunschweig, Germany
[5] Univ Wurzburg, Med Fac, D-97080 Wurzburg, Germany
关键词
GENOMIC DNA; OFF-TARGET; RNA; COLI; EFFICIENCY; GUIDE; ENDONUCLEASE; INHIBITION; NUCLEASES; CLEAVAGE;
D O I
10.1038/s41467-023-36283-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bacterial genome editing commonly relies on chromosomal cleavage with Cas nucleases to counter-select against unedited cells. However, editing normally requires efficient recombination and high transformation efficiencies, which are unavailable in most strains. Here, we show that systematically attenuating DNA targeting activity enables RecA-mediated repair in different bacteria, allowing chromosomal cleavage to drive genome editing. Attenuation can be achieved by altering the format or expression strength of guide (g)RNAs; using nucleases with reduced cleavage activity; or engineering attenuated gRNAs (atgRNAs) with disruptive hairpins, perturbed nuclease-binding scaffolds, non-canonical PAMs, or guide mismatches. These modifications greatly increase cell counts and even improve the efficiency of different types of edits for Cas9 and Cas12a in Escherichia coli and Klebsiella oxytoca. We further apply atgRNAs to restore ampicillin sensitivity in Klebsiella pneumoniae, establishing a resistance marker for genetic studies. Attenuating DNA targeting thus offers a counterintuitive means to achieve CRISPR-driven editing across bacteria. Genome editing in bacteria normally requires efficient recombination and high transformation efficiencies, which often isn't. Here the authors report that systematically attenuating DNA targeting activity enables RecA-mediated repair in different bacteria, allowing chromosomal cleavage to drive editing.
引用
收藏
页数:12
相关论文
共 14 条
  • [1] Systematically attenuating DNA targeting enables CRISPR-driven editing in bacteria
    Daphne Collias
    Elena Vialetto
    Jiaqi Yu
    Khoa Co
    Éva d. H. Almási
    Ann-Sophie Rüttiger
    Tatjana Achmedov
    Till Strowig
    Chase L. Beisel
    Nature Communications, 14
  • [2] Marker-free coselection for CRISPR-driven genome editing in human cells
    Agudelo D.
    Duringer A.
    Bozoyan L.
    Huard C.C.
    Carter S.
    Loehr J.
    Synodinou D.
    Drouin M.
    Salsman J.
    Dellaire G.
    Laganière J.
    Doyon Y.
    Nature Methods, 2017, 14 (6) : 615 - 620
  • [3] Marker-free coselection for CRISPR-driven genome editing in human cells
    Agudelo, Daniel
    Duringer, Alexis
    Bozoyan, Lusine
    Huard, Caroline C.
    Carter, Sophie
    Loehr, Jeremy
    Synodinou, Dafni
    Drouin, Mathieu
    Salsman, Jayme
    Dellaire, Graham
    Laganiere, Josee
    Doyon, Yannick
    NATURE METHODS, 2017, 14 (06) : 615 - +
  • [4] Improved CRISPR-Cas12a-assisted one-pot DNA editing method enables seamless DNA editing
    Wang, Liping
    Wang, Haojun
    Liu, Huayi
    Zhao, Qiyuan
    Liu, Bing
    Wang, Lian
    Zhang, Jun
    Zhu, Jie
    Bao, Rui
    Luo, Yunzi
    BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (06) : 1463 - 1474
  • [5] CRISPR/Cas-mediated macromolecular DNA methylation editing: Precision targeting of DNA methyltransferases in cancer therapy
    Chen, Feng
    Chen, Lu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 308
  • [6] Delivery of CRISPR/Cas9 Plasmid DNA by Hyperbranched Polymeric Nanoparticles Enables Efficient Gene Editing
    Xiu, Kemao
    Saunders, Laura
    Wen, Luan
    Ruan, Jinxue
    Dong, Ruonan
    Song, Jun
    Yang, Dongshan
    Zhang, Jifeng
    Xu, Jie
    Chen, Y. Eugene
    Ma, Peter X. X.
    CELLS, 2023, 12 (01)
  • [7] Improved CRISPR-Cas12a-assisted one-pot DNA editing method enables seamless DNA editing (vol 116, pg 1463, 2020)
    Wang, Liping
    Wang, Haojun
    Liu, Huayi
    Zhao, Qiyuan
    Liu, Bing
    Wang, Lian
    Zhang, Jun
    Zhu, Jie
    Bao, Rui
    Luo, Yunzi
    BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (09) : 2918 - 2918
  • [8] Speed genome editing by transient CRISPR/Cas9 targeting and large DNA fragment deletion
    Luo, Jing
    Lu, Liaoxun
    Gu, Yanrong
    Huang, Rong
    Gui, Lin
    Li, Saichao
    Qi, Xinhui
    Zheng, Wenping
    Chao, Tianzhu
    Zheng, Qianqian
    Liang, Yinming
    Zhang, Lichen
    JOURNAL OF BIOTECHNOLOGY, 2018, 281 : 11 - 20
  • [9] Shortened CRISPR-Cas9 arrays enable multiplexed gene targeting in bacteria from a smaller DNA footprint
    Gawlitt, Sandra
    Liao, Chunyu
    Achmedov, Tatjana
    Beisel, Chase L.
    RNA BIOLOGY, 2023, 20 (01) : 666 - 680
  • [10] CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting
    D G Courtney
    J E Moore
    S D Atkinson
    E Maurizi
    E H A Allen
    D M L Pedrioli
    W H I McLean
    M A Nesbit
    C B T Moore
    Gene Therapy, 2016, 23 : 108 - 112