Bilateral sidewall engineering Si1-x Ge x iTFET for low power display application

被引:0
|
作者
Lin, Jyi-Tsong [1 ]
Chu, Chun-Ju [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Elect Engn, Kaohsiung 80424, Taiwan
关键词
tunnel field-effect transistor (TFET); SiGe; carrier induction; average subthreshold swing; hump effect; FIELD-EFFECT TRANSISTOR; TUNNEL FET; PERFORMANCE; DESIGN; TFETS;
D O I
10.1088/1361-6528/acf9ab
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we demonstrate the performance enhancement of bottom-gated inductive line-tunneling TFET (iTFET) through the integration of bilateral sidewall engineering with SiGe mole fraction variation, considering the feasibility of the fabrication process. We also employ a metal-semiconductor interface for carrier induction to improve the I-ON, resulting in a lower subthreshold swing average (S.S-avg). Using Sentaurus TCAD simulations, we show that the dominant current mechanism is line tunneling, and the hump effect is mitigated by using SiGe with different mole fractions on the sidewalls. Compared to conventional tunnel field-effect transistors, which require at least three doping processes and annealing, the proposed device requires only one doping process and utilizes the metal-semiconductor interface for carrier induction, significantly reducing the fabrication cost and thermal budget. These measurement based simulations show that the S.S-avg is improved to 21.5 mV dec(-1) with an I-ON/I-OFF ratio of 106 at V-D = 0.2 V. This is the first time that a TFT with a subthreshold swing of less than 60 mV dec(-1) has been proposed, so it will save much more power in the future and displays with high energy efficiency can be realized and widely used in IoT applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Carrier mobility in Si1-x Ge x crystals
    Khutsishvili, E. V.
    Gabrichidze, L. L.
    Tsagareishvili, O. A.
    Kobulashvili, N. V.
    INORGANIC MATERIALS, 2009, 45 (06) : 599 - 601
  • [2] Tailoring thermal conductivity by engineering compositional gradients in Si1-x Ge x superlattices
    Ferrando-Villalba, Pablo
    Lopeandia, Aitor F.
    Xavier Alvarez, Francesc
    Paul, Biplab
    de Tomas, Carla
    Isabel Alonso, Maria
    Garriga, Miquel
    Goni, Alejandro R.
    Santiso, Jose
    Garcia, Gemma
    Rodriguez-Viejo, Javier
    NANO RESEARCH, 2015, 8 (09) : 2833 - 2841
  • [3] Hole mobility of strained Si/(001)Si1-x Ge x
    Wang XiaoYan
    Zhang HeMing
    Ma JianLi
    Wang GuanYu
    Qu JiangTao
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2012, 55 (01) : 48 - 54
  • [4] Reverse recovery of Si/Si1-x Ge x heterodiodes fabricated by direct bonding
    Grekhov, I. V.
    Belyakova, E. I.
    Kostina, L. S.
    Rozhkov, A. V.
    Argunova, T. S.
    Oganesyan, G. A.
    TECHNICAL PHYSICS LETTERS, 2011, 37 (07) : 632 - 635
  • [5] Properties of amorphous Si1-x Ge x:H (x=0-1) films
    Najafov, B. A.
    Isakov, G. I.
    INORGANIC MATERIALS, 2009, 45 (07) : 711 - 716
  • [6] Epitaxially Grown Monoisotopic Si, Ge, and Si1-x Ge x Alloy Layers: Production and Some Properties
    Detochenko, A. P.
    Denisov, S. A.
    Drozdov, M. N.
    Mashin, A. I.
    Gavva, V. A.
    Bulanov, A. D.
    Nezhdanov, A. V.
    Ezhevskii, A. A.
    Stepikhova, M. V.
    Chalkov, V. Yu.
    Trushin, V. N.
    Shengurov, D. V.
    Shengurov, V. G.
    Abrosimov, N. V.
    Riemann, H.
    SEMICONDUCTORS, 2016, 50 (03) : 345 - 348
  • [7] Calculation of band edge levels of strained Si/(111)Si1-x Ge-x
    Song, Jianjun
    Zhang, Heming
    Hu, Huiyong
    Dai, Xianying
    Xuan, Rongxi
    JOURNAL OF SEMICONDUCTORS, 2010, 31 (01)
  • [8] Inter valley phonon scattering mechanism in strained Si/(101) Si1-x Ge-x
    Jin Zhao
    Qiao Liping
    Liu Ce
    Guo Chen
    Liu Lidong
    Wang Jiang'an
    JOURNAL OF SEMICONDUCTORS, 2013, 34 (07)
  • [9] Erbium germanosilicide Ohmic contacts on Si1-x Ge x (x=0-0.3) substrates
    Xiang WenFeng
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (06) : 1116 - 1118
  • [10] Current-voltage characteristics of Si/Si1-x Ge x heterodiodes fabricated by direct bonding
    Grekhov, I. V.
    Belyakova, E. I.
    Kostina, L. S.
    Rozhkov, A. V.
    Yusupova, Sh. A.
    Sorokin, L. M.
    Argunova, T. S.
    Abrosimov, N. V.
    Matchanov, N. A.
    Je, J. H.
    TECHNICAL PHYSICS LETTERS, 2008, 34 (12) : 1027 - 1029