Exploring nonlinear strengthening in polycrystalline metallic materials by machine learning methods and heterostructure design

被引:11
|
作者
Du, Jinliang [1 ]
Li, Jie [1 ]
Feng, Yunli [1 ]
Li, Ying [2 ]
Zhang, Fucheng [1 ,3 ]
机构
[1] North China Univ Sci & Technol, Coll Met & Energy, Tangshan 063210, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab Lightweight Multifunct Composite M, Beijing 100081, Peoples R China
[3] State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
关键词
Heterogeneity; Grain boundary; Multiscale; MICROSTRUCTURE FORMATION; MECHANICAL-PROPERTIES; TEMPERATURE; ALLOY; STEEL; DEFORMATION; BEHAVIOR;
D O I
10.1016/j.ijplas.2023.103587
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To improve the strength and plasticity of structural materials, researchers often introduce various strengthening mechanisms such as second-phase strengthening, dislocation strengthening, and back stress strengthening (HDI). Due to the interaction of multiple mechanisms, the linear su-perposition relationship has a poor fitting effect and is only used for rough calculations of the strengthening mechanisms. In this study, the transfer learning data was used to optimize the deep learning network structure (Re-CNN) based on the residual algorithm, and the yield strength prediction physical neural informed model (PNIM) of polycrystalline metallic materials was established. To promote the industrial application of the heterostructure design method, a me-dium carbon steel heterostructure design strategy based on the existing equipment of the factory was proposed. Medium-carbon heterostructure materials (MHSM) with mixed strengthening mechanisms were successfully prepared. MHSM exhibits excellent comprehensive mechanical properties. When a linear relationship is used to describe the MHSM yield strength, there is a large error, while Re-CNN shows satisfactory prediction accuracy. The linear relationship is incom-patible with homogeneous structure materials and heterogeneous structure materials, and its universality is lower than that of nonlinear Re-CNN. Re-CNN shows high cross-scale prediction ability and can be compatible with homogeneous microstructures and heterogeneous micro-structures. Using the heterogeneity evolution characteristics of MHSM, the key factors deviating from the linear relationship were revealed. The overestimation and underestimation of the linear relation are demonstrated by Taylor factor and TEM analysis to be caused by the multiscale properties of ferrite, the behavior of the second phase particles, and the interaction of various mechanisms. This study provides a new idea for the cross-scale calculation of the mechanical properties of polycrystalline metallic materials.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Machine Learning-Based Methods for Materials Inverse Design: A Review
    Liu, Yingli
    Cui, Yuting
    Zhou, Haihe
    Lei, Sheng
    Yuan, Haibin
    Shen, Tao
    Yin, Jiancheng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (02): : 1463 - 1492
  • [2] A snapshot review on soft materials assembly design utilizing machine learning methods
    Martirossyan, Maya M.
    Du, Hongjin
    Dshemuchadse, Julia
    Du, Chrisy Xiyu
    MRS ADVANCES, 2024, 9 (13) : 1088 - 1101
  • [3] Fast Exploring Literature by Language Machine Learning for Perovskite Solar Cell Materials Design
    Zhang, Lei
    Huang, Yiru
    Yan, Leiming
    Ge, Jinghao
    Ma, Xiaokang
    Liu, Zhike
    You, Jiaxue
    Jen, Alex K. Y.
    Frank Liu, Shengzhong
    ADVANCED INTELLIGENT SYSTEMS, 2024, 6 (06)
  • [4] Effect of Constituent Materials on Composite Performance: Exploring Design Strategies via Machine Learning
    Chen, Chun-Teh
    Gu, Grace X.
    ADVANCED THEORY AND SIMULATIONS, 2019, 2 (06)
  • [5] Electronic Learning Materials for Machine Design
    Hynek, Martin
    Grach, Miroslav
    Votapek, Petr
    INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION, 2014, 30 (06) : 1549 - 1555
  • [6] Inverse Design of Materials by Machine Learning
    Wang, Jia
    Wang, Yingxue
    Chen, Yanan
    MATERIALS, 2022, 15 (05)
  • [7] Interpretable machine learning for materials design
    James Dean
    Matthias Scheffler
    Thomas A. R. Purcell
    Sergey V. Barabash
    Rahul Bhowmik
    Timur Bazhirov
    Journal of Materials Research, 2023, 38 : 4477 - 4496
  • [8] Machine learning for materials design and discovery
    Vasudevan, Rama
    Pilania, Ghanshyam
    Balachandran, Prasanna V.
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (07)
  • [9] Interpretable machine learning for materials design
    Dean, James
    Scheffler, Matthias
    Purcell, Thomas A. R.
    Barabash, Sergey V.
    Bhowmik, Rahul
    Bazhirov, Timur
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (20) : 4477 - 4496
  • [10] Exploring design space: Machine learning for multi-objective materials design optimization with enhanced evaluation strategies
    Conrad, Felix
    Stoecker, Julien Philipp
    Signorini, Cesare
    Salgado, Isabela de Paula
    Wiemer, Hajo
    Kaliske, Michael
    Ihlenfeldt, Steffen
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 246