Atomically Coupled 2D MnO2/MXene Superlattices for Ultrastable and Fast Aqueous Zinc-Ion Batteries

被引:40
|
作者
Wang, Yalei [1 ,2 ]
Liu, Liwei [1 ,2 ]
Wang, Yiping [1 ,2 ]
Qu, Junle [1 ,2 ]
Chen, Yu [1 ,2 ]
Song, Jun [1 ,2 ]
机构
[1] Shenzhen Univ, State Key Lab Radio Frequency Heterogeneous Integr, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
2D superlattices; MnO2; nanosheets; MXenes; densityfunctional theory calculations; zinc-ion batteries;
D O I
10.1021/acsnano.3c07627
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The delta manganese dioxide (delta-MnO2) has sparked a great deal of scientific research for application as the cathode in aqueous zinc-ion batteries (AZIBs) owing to its characteristic layered structure. However, further development and commercial application of the delta-MnO2 cathode are hindered by the low rate performance and poor cycling stability, which are derived from its inherently poor electrical conductivity and structural instability during the charge/discharge process. Herein, we report the fabrication of the 2D MnO2/MXene superlattice by the solution-phase assembly of unilamellar MnO2 and Ti3C2Tx MXene nanosheets, where the unilamellar MnO2 nanosheet is separated and stabilized between unilamellar MXene nanosheets. The MXene nanosheets can not only serve as structural stabilizers to isolate the MnO2 nanosheets and prevent them from aggregating but also act as conductive contributors to strengthen the electrical conductivity, thus maintaining the overall structural stability and realizing the rapid electron transport. Additionally, the regular stacking with a repeating periodicity of the 2D MnO2/MXene can lead to highly exposed active sites, promoting ion diffusion. As a consequence, the large specific capacity of 315.1 mAh g(-1) at 0.2 A g(-1), prominent rate performance of 149.8 mAh g(-1) at 5 A g(-1), and excellent long-term cycling stability after 5000 cycles with 88.1% capacity retention are obtained for the MnO2/MXene cathode in AZIBs. Meanwhile, the superior H+/Zn2+ diffusion kinetics and desirable pseudocapacitive behaviors are elucidated by electrochemical measurements and density functional theory computations. This study provides an advanced perspective for the innovation of manganese oxide-based cathode materials in AZIBs.
引用
收藏
页码:21761 / 21770
页数:10
相关论文
共 50 条
  • [1] 3D printing of customized MnO2 cathode for aqueous zinc-ion batteries
    Liu, Zhen
    He, Han-bing
    Luo, Ze-xiang
    Wang, Xiao-feng
    Zheng, Jing
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2023, 33 (04) : 1193 - 1204
  • [2] 2D Layered MnO2 with an Ultralarge Interlayer Spacing for Aqueous Zinc Ion Batteries
    Zhang, Aina
    Yin, Xiuxiu
    Zhang, Xu
    Ba, Junjie
    Li, Junpeng
    Wei, Yingjin
    Wang, Yizhan
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (03) : 1298 - 1305
  • [3] Constructing 2D Sandwich-like MOF/MXene Heterostructures for Durable and Fast Aqueous Zinc-Ion Batteries
    Wang, Yalei
    Song, Jun
    Wong, Wai-Yeung
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (08)
  • [4] Preparation of α-MnO2 Nanorods/Porous Carbon Cathode for Aqueous Zinc-ion Batteries
    Li, Yanli
    Yu, Dandan
    Lin, Sen
    Sun, Dongfei
    Lei, Ziqiang
    ACTA CHIMICA SINICA, 2021, 79 (02) : 200 - 207
  • [5] Manganese hexacyanoferrate anchoring MnO2 with enhanced stability for aqueous zinc-ion batteries
    Chen, Junchen
    Liao, Li
    Sun, Bin
    Song, Xin
    Wang, Mingshan
    Guo, Bingshu
    Ma, Zhiyuan
    Yu, Bo
    Li, Xing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 903
  • [6] Dissolution-Redeposition Mechanism of the MnO2 Cathode in Aqueous Zinc-Ion Batteries
    Wu, Tzu-Ho
    Lin, Ya-Qi
    Althouse, Zachary D.
    Liu, Nian
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 12267 - 12274
  • [7] A comparative study on the structural, chemical, morphological and electrochemical properties of α-MnO2, β-MnO2 and δ-MnO2 as cathode materials in aqueous zinc-ion batteries
    Chacko, Basil
    Wuppulluri, Madhuri
    MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2025, 14 (01)
  • [8] Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries
    Wang, Jinjin
    Wang, Jian-Gan
    Liu, Huanyan
    Wei, Chunguang
    Kang, Feiyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (22) : 13727 - 13735
  • [9] MnO2 Nanowires Anchored with Graphene Quantum Dots for Stable Aqueous Zinc-Ion Batteries
    Guo, Ruiting
    Ni, Lianshan
    Zhang, Hao
    Gao, Xu
    Momen, Roya
    Massoudi, Abouzar
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (10) : 10940 - 10947
  • [10] Unveiling performance evolution mechanisms of MnO2 polymorphs for durable aqueous zinc-ion batteries
    Liao, Yanxin
    Chen, Hai-Chao
    Yang, Chun
    Liu, Rui
    Peng, Zhiwei
    Cao, Haijie
    Wang, Kuikui
    ENERGY STORAGE MATERIALS, 2022, 44 : 508 - 516