Earth Observation Satellite: Big Data Retrieval Method with Fuzzy Expression of Geophysical Parameters and Spatial Features

被引:0
|
作者
Arai, Kohei [1 ]
机构
[1] Saga Univ, Informat Sci Dept, Saga, Japan
关键词
Fuzzy retrieval; earth observation satellite; big data; geophysical parameter; oceanographer; circle feature; arc feature; line feature; fuzzy expression;
D O I
10.14569/IJACSA.2023.0140825
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A method for fuzzy retrievals of Earth observation satellite image database using geophysical parameters and spatial features is proposed. It is confirmed that the proposed method allows fuzzy expressions of queries with sea surface temperature, chlorophyll-a concentration and cloud coverage as well as circle, line and edge, for instance "rather cold sea surface temperature and a sort of circle feature". Thus users, in particular, oceanographers may access the most appropriate image data from the database for finding of cold cores (circle features), fronts (arc and line features), etc. in a simple manner. Although this is just an example for oceanographers, it is found that the proposed method allows data mining with fuzzy expressions of geophysical queries from the big data platforms of the earth observation satellite database.
引用
收藏
页码:227 / 234
页数:8
相关论文
共 23 条
  • [1] Quantitative retrieval of geophysical parameters using satellite data
    Xue, Yong
    Wan, Wei
    Li, Yingjie
    Guang, Jie
    Bai, Linyian
    Wang, Ying
    Ai, Jianwen
    COMPUTER, 2008, 41 (04) : 33 - +
  • [2] Satellite Image Time Series Analysis for Big Earth Observation Data
    Simoes, Rolf
    Camara, Gilberto
    Queiroz, Gilberto
    Souza, Felipe
    Andrade, Pedro R.
    Santos, Lorena
    Carvalho, Alexandre
    Ferreira, Karine
    REMOTE SENSING, 2021, 13 (13)
  • [3] GEOBIA Achievements and Spatial Opportunities in the Era of Big Earth Observation Data
    Lang, Stefan
    Hay, Geoffrey J.
    Baraldi, Andrea
    Tiede, Dirk
    Blaschke, Thomas
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (11)
  • [4] Big Data Management in Earth Observation The German satellite data archive at the German Aerospace Center
    Kiemle, Stephan
    Molch, Katrin
    Schropp, Stephan
    Weiland, Nicolas
    Mikusch, Eberhard
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2016, 4 (03): : 51 - 58
  • [5] Satellite Image Database Search Engine which Allows Fuzzy Expression of Geophysical Parameters of Queries
    Arai, Kohei
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (05) : 69 - 73
  • [6] Satellite image database search engine which allows fuzzy expression of geophysical parameters of queries
    Arai K.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (05): : 69 - 73
  • [7] Big Earth Observation Data Integration in Remote Sensing Based on a Distributed Spatial Framework
    Cheng, Yinyi
    Zhou, Kefa
    Wang, Jinlin
    Yan, Jining
    REMOTE SENSING, 2020, 12 (06)
  • [8] Spatial health impact assessment of urban air pollutants using Earth observation satellite data
    Sarigiannis, D. A.
    Gotti, A.
    Karakitsios, S.
    Kalabokas, P.
    Manes, F.
    La Torre, G.
    EUROPEAN JOURNAL OF PUBLIC HEALTH, 2010, 20 : 150 - 150
  • [9] Retrieval of high spatial resolution precipitable water vapor maps using heterogeneous earth observation data
    Ma, Xiongwei
    Yao, Yibin
    Zhang, Bao
    He, Changyong
    REMOTE SENSING OF ENVIRONMENT, 2022, 278
  • [10] An Efficient Annotation Method for Big Data Sets of High-Resolution Earth Observation Images
    Lu, Zeshan
    Liu, Kun
    Liu, Zhen
    Wang, Cong
    Shen, Maoxin
    Xu, Tao
    PROCEEDINGS OF 2019 2ND INTERNATIONAL CONFERENCE ON BIG DATA TECHNOLOGIES (ICBDT 2019), 2019, : 240 - 243