Chitosan and silica nanoparticles-modified xanthan gum-derived bio-nanocomposite hydrogel film for efficient uptake of methyl orange acidic dye

被引:14
|
作者
Rahmatpour, Ali [1 ]
Hesarsorkh, Amir Hossein Alizadeh [1 ]
机构
[1] Shahid Beheshti Univ, Fac Chem & Petr Sci, Polymer Chem Res Lab, POB 1983969411, Tehran 1983969411, Iran
关键词
Xanthan gum; Chitosan; Nanocomposite hydrogel; Adsorption; Methyl orange; SELECTIVE REMOVAL; AQUEOUS-SOLUTIONS; CARBON NANOTUBES; GRAPHENE OXIDE; CATIONIC DYES; ANIONIC DYES; WASTE-WATER; GUAR GUM; ADSORPTION; ADSORBENT;
D O I
10.1016/j.carbpol.2023.121721
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this contribution, a bio-nanocomposite hydrogel film (CS/XG.SiO2) of chitosan/silica NPs-modified xanthan gum was prepared via a facile solution casting blending approach and utilized to capture the anionic methyl orange (MO) from aqueous solution. A Taguchi standard method was used to optimize the hydrogel nanocomposite synthesis reaction conditions after comprehensive characterization using various techniques. Under various operating parameters, the hydrogel biofilm was tested for its effectiveness in adsorbing MO dye in a batch process. In agreement with Langmuir isotherm, the CS/XG.SiO2 biofilm was capable of adsorbing MO at a maximum capacity of 294 mg/g at pH 5.30, contact time 45 min, temperature 25 degree celsius, and concentration (C-0) 50 mg/L. Pseudo-second-order model and adsorption kinetics data well matched. The thermodynamic data indicate that adsorption occurred spontaneously and exothermically. The main mechanisms driving the adsorption are electrostatic interactions and hydrogen bonding between the CS/XG.SiO2 nanocomposite and the dye. Furthermore, the biofilm is regenerative, allowing for up to five reuses while maintaining a 75 % dye removal efficiency. This study highlights that the CS/XG.SiO2 hydrogel nanocomposite is an inexpensive, reusable, and eco-friendly bio-adsorbent that is capable of anionic dye adsorption.
引用
收藏
页数:17
相关论文
empty
未找到相关数据