Evaluation and driving force analysis of the water-energy-carbon nexus in agricultural trade for RCEP countries

被引:19
|
作者
Jin, Xuanyi [1 ,2 ]
Jiang, Wenrui [1 ,2 ]
Fang, Delin [1 ,2 ,4 ]
Wang, Saige [3 ]
Chen, Bin [3 ,4 ]
机构
[1] Beijing Normal Univ, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China
[2] Beijing Normal Univ, Fac Geog Sci, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Sch Environm, Beijing 100875, Peoples R China
[4] 19 Xinjiekouwai St, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Agricultural trade; Water-energy-carbon nexus; Nexus intensity; The modified gravity model; RCEP; MULTIREGIONAL INPUT-OUTPUT; INTERNATIONAL-TRADE; FOOD; AUSTRALIA; VIETNAM; EXPORTS; IMPACT; GROWTH; ASIA; TPP;
D O I
10.1016/j.apenergy.2023.122143
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Water utilization, energy consumption, and carbon emissions are mutually intertwined and play vital roles in agricultural supply chains. Identifying the water-energy-carbon (WEC) nexus relationships along with its driving forces is of great importance to alleviate resource scarcity and advance a green economy. This study utilizes multiregional input-output (MRIO) analysis and proposes a new indicator, nexus intensity, to investigate the relationship among water, energy, and carbon flows in agricultural trade; furthermore, it modifies the gravity trade model to explore the hidden driving forces for the WEC nexus. The Regional Comprehensive Economic Partnership (RCEP) countries are used as a case study, and the results show that large volumes of WEC flow roughly from the southeast to the northwest. China plays an active role in agricultural trade, contributing 53.34%, 62.00%, and 64.09% of RCEP agriculture-related water utilization, energy consumption, and carbon emissions, respectively. For nexus intensity on the production side, countries with less agriculture-related WEC tend to have extreme situations of extreme resource utilization or emissions. Such situations have become more balanced on the consumption side. Exporters exert a greater impact on agricultural trade than importers. Small population countries such as Australia, New Zealand, and Cambodia serve as granaries for other countries. In addition, countries with higher carbon emissions tend to import carbon-intensive products from other countries. By analyzing the linkages between water, energy, and carbon associated with agricultural products and excavating driving forces, this study provides insights for nexus management on improving resource use efficiency and reducing carbon emissions through transnational trade.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The impact of irrigation modes on agricultural water-energy-carbon nexus
    Zhu, Ruiming
    Zhao, Rongqin
    Li, Xiaojian
    Hu, Xueyao
    Jiao, Shixing
    Xiao, Liangang
    Xie, Zhixiang
    Sun, Jin
    Wang, Shuai
    Yang, Qinglin
    Zhang, Huifang
    Chuai, Xiaowei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 860
  • [2] Water-energy-carbon synergies and trade-offs: A daily nexus analysis for wastewater treatment plants
    Ni, Xiaojing
    Huang, Xiangfeng
    Guo, Ru
    Wang, Jinhui
    Peng, Kaiming
    Zhang, Wei
    Zhu, Yuyu
    Yang, Weilan
    Wang, Liya
    Cai, Chen
    Liu, Jia
    Liu, Erwu
    RESOURCES CONSERVATION AND RECYCLING, 2023, 188
  • [3] Upgrading the industrial structure for optimizing water-energy-carbon nexus in regional trade network
    Zhu, Benshuo
    Guo, Ru
    Tang, Yun-en
    Peng, Kaiming
    Huang, Xiangfeng
    JOURNAL OF CLEANER PRODUCTION, 2024, 469
  • [4] Analysis of the water-energy-carbon nexus for sustainable development of the selected industries
    Naing, Pyae Mon
    Babel, Mukand S.
    Karthe, Daniel
    Stamm, Juergen
    SUSTAINABLE DEVELOPMENT, 2024, 32 (05) : 5836 - 5860
  • [5] Water-energy-carbon nexus in China's intra and inter-regional trade
    Tian, Peipei
    Lu, Hongwei
    Reinout, Heijungs
    Li, Dan
    Zhang, Keli
    Yang, Yiyang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 806
  • [6] Water-energy-carbon nexus: a case study of Bangkok
    Shrestha, Sangam
    Parajuli, Kshitij
    Babel, Mukand S.
    Dhakal, Shobhakar
    Shinde, Victor
    WATER SCIENCE AND TECHNOLOGY-WATER SUPPLY, 2015, 15 (05): : 889 - 897
  • [7] Optimization of the Water-Energy-Carbon Nexus in the Residential Water Uses of Shanghai, China
    Zhou, Jianyu
    Zhu, Tingju
    SUSTAINABILITY, 2024, 16 (09)
  • [8] Research on the Coupling Evaluation and Driving Factors of Water-Energy-Carbon in the Yellow River Basin
    Liu, Jianhua
    Pu, Lingyu
    Huang, Liangchao
    Shi, Tianle
    WATER, 2023, 15 (13)
  • [9] The Water-Energy-Carbon Nexus: Optimising Rainwater Harvesting in Mexico City
    Valdez, M. Carmen
    Adler, Ilan
    Barrett, Mark
    Ochoa, Ricardo
    Perez, Angel
    ENVIRONMENTAL PROCESSES-AN INTERNATIONAL JOURNAL, 2016, 3 (02): : 307 - 323
  • [10] Water-Energy-Carbon Nexus Analysis for Water Supply Systems with Brackish Groundwater Sources in Arid Regions
    Alresheedi, Mohammad T.
    Haider, Husnain
    Shafiquzzaman, Md.
    AlSaleem, Saleem S.
    Alinizzi, Majed
    SUSTAINABILITY, 2022, 14 (09)