Analysis, Prototyping and Locomotion Control of a Quadruped Robot

被引:1
|
作者
Souza, Lucas [1 ]
Mohr, Felipe [2 ]
Alencar, Brenda [2 ]
机构
[1] Autonomous Robot Res Ctr, Technol Innovat Inst, Abu Dhabi, U Arab Emirates
[2] CIMATEC, Robot Dept, SENAI, Salvador, BA, Brazil
关键词
Quadruped robot; locomotion control; kinematic model; gait planner;
D O I
10.1109/LARS/SBR/WRE59448.2023.10333039
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the growth of robotics, mobile robots are increasingly becoming common in key sectors of the economy. When compared to wheeled and tracked robots, legged robots present greater mobility and maneuverability, but less locomotion stability, which in turn demands more complex control systems. This paper aims to develop a quadruped robot with a PID stabilization controller to compensate for the body oscillation during the walk. For that, the gait planner and the kinematic model algorithm were implemented. After designing and manufacturing the robot, experiments were conducted to assess the robot's locomotion performance when using the stabilization controller in flat and uneven terrains. It was observed that the stabilization controller contributed to reducing the oscillation of the robot's body in both roll and pitch angles in both terrains.
引用
收藏
页码:129 / 134
页数:6
相关论文
共 50 条
  • [1] CPG Driven Locomotion Control of Quadruped Robot
    Liu, Chengju
    Chen, Yifei
    Zhang, Jiaqi
    Chen, Qijun
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 2368 - 2373
  • [2] FEEDBACK CONTROL OF THE LOCOMOTION OF A TAILED QUADRUPED ROBOT
    Liu, Yujiong
    Ben-Tzvi, Pinhas
    PROCEEDINGS OF ASME 2021 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2021, VOL 8B, 2021,
  • [3] The Quadruped Robot Locomotion Based on Force Control
    Zhang, Xianpeng
    Lang, Lin
    Wang, Jian
    Ma, Hongxu
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 5440 - 5445
  • [4] Locomotion Control With Slip Detection for Quadruped Robot, PongBot
    Kim, Kyung-Hwan
    Kim, Jung-Yup
    International Journal of Control, Automation and Systems, 2024, 22 (12) : 3744 - 3752
  • [5] Adaptive gait pattern control of a quadruped locomotion robot
    Tsujita, K
    Tsuchiya, K
    Onat, A
    IROS 2001: PROCEEDINGS OF THE 2001 IEEE/RJS INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4: EXPANDING THE SOCIETAL ROLE OF ROBOTICS IN THE NEXT MILLENNIUM, 2001, : 2318 - 2325
  • [6] Locomotion control of quadruped robot based on central pattern generators
    Chen Q.
    Wang G.
    Liu C.
    Tongji Daxue Xuebao/Journal of Tongji University, 2010, 38 (10): : 1534 - 1539
  • [7] Locomotion Control for Quadruped Robot Based on Central Pattern Generators
    Wang Mengyin
    Tang Zhiyong
    Chen Bin
    Zhang Jinhui
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 6335 - 6339
  • [8] Hybrid Compliance Control for Locomotion of Electrically Actuated Quadruped Robot
    Koco, Edin
    Mirkovic, Damir
    Kovacic, Zdenko
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 94 (3-4) : 537 - 563
  • [9] Hybrid Compliance Control for Locomotion of Electrically Actuated Quadruped Robot
    Edin Koco
    Damir Mirkovic
    Zdenko Kovačić
    Journal of Intelligent & Robotic Systems, 2019, 94 : 537 - 563
  • [10] H∞ control of a quadruped locomotion robot aiming at dynamic walking
    Uchida, Hiroaki
    Nonami, Kenzo
    Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1995, 61 (592): : 4680 - 4686