Ensemble Deep Learning for Sustainable Multimodal UAV Classification

被引:16
|
作者
McCoy, James [1 ]
Rawal, Atul [1 ]
Rawat, Danda B. [1 ]
Sadler, Brian M. [2 ]
机构
[1] Howard Univ, Dept Elect & Comp Sci, Washington, DC 20059 USA
[2] US Army, Res Lab, Adelphi, MD 20783 USA
关键词
Feature extraction; Convolutional neural networks; Convolution; Hidden Markov models; Acoustics; Deep learning; Autonomous aerial vehicles; Ensemble deep learning; multi-modal UAV classification; UAV detection; machine learning; CNN;
D O I
10.1109/TITS.2022.3170643
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Unmanned aerial vehicles (UAVs) have increasingly shown to be useful in civilian applications (such as agriculture, public safety, surveillance) and mission critical military applications. Despite the growth in popularity and applications, UAVs have also been used for malicious purposes. In such instances, their timely detection and identification has garnished rising interest from government, industry and academia. While much work has been done for detecting UAVs, there still exist limitations related to the impact of extreme environmental conditions and big dataset requirements. This paper proposes a novel ensemble deep learning framework that has hybrid synthetic and deep features to detect unauthorized or malicious UAVs by using acoustic, image/video and wireless radio frequency (RF) signals for robust UAV detection and classification. We present the performance evaluation of the proposed approach using numerical results obtained from experiments using acoustic, image/video and wireless RF signals. The proposed approach outperforms the existing related approaches for detecting malicious UAVs.
引用
收藏
页码:15425 / 15434
页数:10
相关论文
共 50 条
  • [1] Ensemble of Multimodal Deep Learning Models for Violin Bowing Techniques Classification
    Muhammed, Zain
    Karunakaran, Nagamanoj
    Bhat, Pranamya P.
    Arya, Arti
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (01) : 40 - 48
  • [2] Ensemble and Multimodal Learning for Pathological Voice Classification
    Ariyanti, Whenty
    Hussain, Tassadaq
    Wang, Jia-Ching
    Wang, Chi-Tei
    Fang, Shih-Hau
    Tsao, Yu
    IEEE SENSORS LETTERS, 2021, 5 (07) : 1 - 4
  • [3] Emotion Recognition on Multimodal with Deep Learning and Ensemble
    Dharma, David Adi
    Zahra, Amalia
    International Journal of Advanced Computer Science and Applications, 2022, 13 (12): : 656 - 663
  • [4] Emotion Recognition on Multimodal with Deep Learning and Ensemble
    Dharma, David Adi
    Zahra, Amalia
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (12) : 656 - 663
  • [5] Ensemble multimodal deep learning for early diagnosis and accurate classification of COVID-19
    Kumar, Santosh
    Gupta, Sachin Kumar
    Kumar, Vinit
    Kumar, Manoj
    Chaube, Mithilesh Kumar
    Naik, Nenavath Srinivas
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [6] Deep Transfer Learning Ensemble for Classification
    Kandaswamy, Chetak
    Silva, Luis M.
    Alexandre, Luis A.
    Santos, Jorge M.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I (IWANN 2015), 2015, 9094 : 335 - 348
  • [7] Deep Learning based UAV type classification
    Sommer, Lars W.
    Schumann, Arne
    PATTERN RECOGNITION AND TRACKING XXXII, 2021, 11735
  • [8] Speech Intention Classification with Multimodal Deep Learning
    Gu, Yue
    Li, Xinyu
    Chen, Shuhong
    Zhang, Jianyu
    Marsic, Ivan
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CANADIAN AI 2017, 2017, 10233 : 260 - 271
  • [9] Ensemble Model with Deep Learning for Melanoma Classification
    Suganthi, N. Mohana
    Arun, M.
    Chitra, A.
    Rajpriya, R.
    Gayathri, B.
    Padmini, B.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1541 - 1545
  • [10] Deep Ensemble Learning for Retinal Image Classification
    Ho, Edward
    Wang, Edward
    Youn, Saerom
    Sivajohan, Asaanth
    Lane, Kevin
    Chun, Jin
    Hutnik, Cindy M. L.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2022, 11 (10):