Interpretable machine learning for building energy management: A state-of-the-art review

被引:118
|
作者
Chen, Zhe [1 ]
Xiao, Fu [1 ,2 ]
Guo, Fangzhou [1 ]
Yan, Jinyue [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg Environm & Energy Engn, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Res Inst Smart Energy, Hong Kong, Peoples R China
来源
关键词
Building energy efficiency; Building energy flexibility; Interpretable machine learning; Model interpretability; Explainable artificial intelligence; ELECTRICITY CONSUMPTION; EXPLAINABLE AI; PERFORMANCE; DIAGNOSIS; ATTENTION; MODEL; LOAD;
D O I
10.1016/j.adapen.2023.100123
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Machine learning has been widely adopted for improving building energy efficiency and flexibility in the past decade owing to the ever-increasing availability of massive building operational data. However, it is challenging for end-users to understand and trust machine learning models because of their black-box nature. To this end, the interpretability of machine learning models has attracted increasing attention in recent studies because it helps users understand the decisions made by these models. This article reviews previous studies that adopted interpretable machine learning techniques for building energy management to analyze how model interpretability is improved. First, the studies are categorized according to the application stages of interpretable machine learning techniques: ante-hoc and post-hoc approaches. Then, the studies are analyzed in detail according to specific techniques with critical comparisons. Through the review, we find that the broad application of interpretable machine learning in building energy management faces the following significant challenges: (1) different terminologies are used to describe model interpretability which could cause confusion, (2) performance of interpretable ML in different tasks is difficult to compare, and (3) current prevalent techniques such as SHAP and LIME can only provide limited interpretability. Finally, we discuss the future R & D needs for improving the interpretability of black-box models that could be significant to accelerate the application of machine learning for building energy management.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Interpretable Machine Learning - A Brief History, State-of-the-Art and Challenges
    Molnar, Christoph
    Casalicchio, Giuseppe
    Bischl, Bernd
    ECML PKDD 2020 WORKSHOPS, 2020, 1323 : 417 - 431
  • [2] Applications of machine learning in pipeline integrity management: A state-of-the-art review
    Rachman, Andika
    Zhang, Tieling
    Ratnayake, R. M. Chandima
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2021, 193
  • [3] Machine learning applications for building structural design and performance assessment: State-of-the-art review
    Sun, Han
    Burton, Henry V.
    Huang, Honglan
    JOURNAL OF BUILDING ENGINEERING, 2021, 33
  • [4] Machine Learning in Healthcare Analytics: A State-of-the-Art Review
    Das, Surajit
    Nayak, Samaleswari P.
    Sahoo, Biswajit
    Nayak, Sarat Chandra
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2024, 31 (07) : 3923 - 3962
  • [5] Machine learning for structural engineering: A state-of-the-art review
    Thai, Huu-Tai
    STRUCTURES, 2022, 38 : 448 - 491
  • [6] A Future Direction of Machine Learning for Building Energy Management: Interpretable Models
    Gugliermetti, Luca
    Cumo, Fabrizio
    Agostinelli, Sofia
    ENERGIES, 2024, 17 (03)
  • [7] Machine Learning in Directed Energy Deposition (DED) Additive Manufacturing: A State-of-the-art Review
    Era, Israt Zarin
    Farahani, Mojtaba A.
    Wuest, Thorsten
    Liu, Zhichao
    MANUFACTURING LETTERS, 2023, 35 : 689 - 700
  • [8] Machine learning assisted advanced battery thermal management system: A state-of-the-art review
    Li, Ao
    Weng, Jingwen
    Yuen, Anthony Chun Yin
    Wang, Wei
    Liu, Hengrui
    Lee, Eric Wai Ming
    Wang, Jian
    Kook, Sanghoon
    Yeoh, Guan Heng
    JOURNAL OF ENERGY STORAGE, 2023, 60
  • [9] State-of-the-Art Review of Positive Energy Building and Community Systems
    Kumar, Gokula Manikandan Senthil
    Cao, Sunliang
    ENERGIES, 2021, 14 (16)
  • [10] State-of-the-art on research and applications of machine learning in the building life cycle
    Hong, Tianzhen
    Wang, Zhe
    Luo, Xuan
    Zhang, Wanni
    ENERGY AND BUILDINGS, 2020, 212