Macro-mesoscopic mechanical properties and damage progression of cemented tailings backfill under cyclic static load disturbance

被引:15
|
作者
Song, Xuepeng [1 ]
Huang, Yucheng [1 ]
Wang, Shi [2 ]
Yu, Haigen [2 ]
Hao, Yuxin [1 ]
机构
[1] China Univ Min & Technol Beijing, Sch Energy & Min Engn, Beijing 100083, Peoples R China
[2] Jiangxi Univ Sci & Technol, Sch Resources & Environm Engn, Ganzhou 341000, Peoples R China
关键词
Macroscopic properties; Mesoscopic structure; Damage progression; Mining stress; Initial damage; Acoustic emission;
D O I
10.1016/j.compstruct.2023.117433
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Frequent mining stress disturbances in deep-earth resource extraction lead to different degrees of initial damage within cemented tailings backfill (CTB), which in turn changes the structural characteristics of the matrix and significantly affects the stability of CTB. To simulate the stress disturbance process of CTB during mining activities more realistically, cyclic loading and unloading disturbances were performed on the CTB. The stress disturbance levels (SDL) were 20, 40, 60, and 80% uniaxial compressive strength (UCS), and the stress disturbance counts (SDC) were 5, 10, 15, and 20 times, respectively. Subsequently, a series of experimental studies were conducted on CTB and disturbed damage CTB (DCTB) using UCS, nuclear magnetic resonance, ultrasonic pulse velocity (UPV) testing, and acoustic emission (AE) monitoring. The results show that the UCS of the backfill decreased with increasing SDL and SDC, except for 20% SDL and 5th SDC. The elastic modulus exhibited a rise at 20%-40% SDL and a fall at 60%-80% SDL. Compared with CTB, the stress-strain curve of DCTB showed a left shift -overlap -right shift -accelerated right shift change in the compacting stage with increasing SDL. Moreover, the porosity and UPV reflected by the mesoscopic structure correspond to the trend of UCS. The correlation mechanism between mesoscopic structure and macroscopic strength was determined, and the initial damage degree of DCTB was defined in terms of the average variation characteristics of macro-mesoscopic parameters. According to the AE monitoring results, it was observed that increasing SDL and SDC led to a significant increase in the AE energy active stage during loading. The damage curve established from the AE energy considering the initial damage degree rose exponentially. As the initial damage degree intensified, a noticeable and wide-range drop in the b-value before the peak was observed, indicating the occurrence of frequent large-scale fracture activities within the DCTB. Also, the damage degree of DCTB intensified, the collapse zone increased, and the failure mode of the backfill transformed from tensile to mixed tensile-shear damage. The research results can provide theoretical support and a reference basis for the stability analysis and strength design of the backfill under the action of mining stress.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A numerical study of macro-mesoscopic mechanical properties of gangue backfill under biaxial compression
    Huang Zhimin
    Ma Zhanguo
    Zhang Lei
    Gong Peng
    Zhang Yankun
    Liu Fei
    InternationalJournalofMiningScienceandTechnology, 2016, 26 (02) : 309 - 317
  • [2] A numerical study of macro-mesoscopic mechanical properties of gangue backfill under biaxial compression
    Huang Zhimin
    Ma Zhanguo
    Zhang Lei
    Gong Peng
    Zhang Yankun
    Liu Fei
    INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2016, 26 (02) : 309 - 317
  • [3] Mechanical properties and damage mode of cemented tailings backfill in an acidic environment
    Huang, Y.
    Wang, G.
    Rao, Y.
    Liu, W.
    JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, 2021, 121 (06) : 317 - 324
  • [4] Mechanical properties, damage evolution and energy dissipation of cemented tailings backfill under impact loading
    Hou, Yongqiang
    Yin, Shenghua
    Yang, Shixing
    Chen, Xin
    Du, Huihui
    JOURNAL OF BUILDING ENGINEERING, 2023, 66
  • [5] Late mechanical properties and energy evolution mechanism of cemented tailings backfill under early damage
    Gan, Deqing
    Sun, Haikuan
    Liu, Zhiyi
    Zhang, Yajie
    ENGINEERING FAILURE ANALYSIS, 2023, 149
  • [6] An Experimental and Numerical Study on the Mechanical Properties and Damage Evolution of Cemented Tailings Backfill Under Uniaxial Compression
    Yuan, Congxiang
    Wang, Houqiang
    Liu, Zhixiang
    Zhang, Shuangxia
    Yan, Mengyang
    Liang, Xiaodie
    Liu, Zhiwei
    Liu, Weijun
    MATERIALS, 2025, 18 (04)
  • [7] Mechanical Properties, Failure Modes, and Damage Development of Stratified Cemented Tailings Backfill under Uniaxial Compression
    Xu, Wenbin
    Zhang, Yalun
    Chen, Wei
    Sun, Tong
    Sang, Yilin
    MINERALS, 2024, 14 (09)
  • [8] Effect of early load on mechanical properties and damage of cemented gangue backfill
    Feng, Guorui
    Xie, Wenshuo
    Guo, Yuxia
    Guo, Jun
    Ran, Hongyu
    Zhao, Yonghui
    Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering, 2022, 41 (04): : 775 - 784
  • [9] Effect of early damage on the mechanical properties, localized deformation and damage failure of cemented tailings backfill
    Liu, Zhuoran
    Li, Botao
    Sun, Qi
    Yang, Liang
    Fei, E.
    Liu, Dekun
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 424
  • [10] Mechanical Properties and Microstructure Evolution of Cemented Tailings Backfill Under Seepage Pressure
    Ke, Yuxian
    Shen, Yang
    Qing, Chen
    Hu, Kaijian
    Wang, Shi
    Chen, Qiusong
    Guan, Huadong
    FRONTIERS IN MATERIALS, 2022, 8