Deep Federated Unrolling for Boosting Low-resolution Lidar-based SLAM Solutions

被引:0
|
作者
Gkillas, Alexandros [1 ,2 ]
Anagnostopoulos, Christos [1 ,2 ]
Lalos, Aris S. [1 ]
机构
[1] Athena Res Ctr, Ind Syst Inst, Patras Sci Pk, Patras, Greece
[2] AviSense AI, Patras Sci Pk Bldg, Patras, Greece
来源
2023 IEEE 25TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, MMSP | 2023年
关键词
SLAM; deep unrolling. federated learning;
D O I
10.1109/MMSP59012.2023.10337642
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This demo presents a novel Deep Federated Unrolling (FL-DU) super-resolution (SR) approach for enabling low-resolution Lidar-based Simultaneous Localization and Mapping (SLAM) solutions. The proposed system enhances the accuracy of low-cost Lidar sensors via novel explainable by design neural networks and by enabling collaboration between individual vehicles during learning, thereby minimizing the need for costly high-resolution Lidar sensors, leading to significant cost reductions without affecting the SLAM accuracy. Our demo is available on https://www.youtube.com/watch?v=Fp_nBrD6NiY.
引用
收藏
页数:1
相关论文
共 50 条
  • [1] A Federated Deep Unrolling Method for Lidar Super-Resolution: Benefits in SLAM
    Gkillas, Alexandros
    Lalos, Aris S.
    Markakis, Evangelos K.
    Politis, Ilias
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 199 - 215
  • [2] Lidar-Based Cooperative SLAM with Different Parameters
    Sunil, Sooraj
    Mozaffari, Saeed
    Rajmeet, Singh
    Shahrrava, Behnam
    Alirezaee, Shahpour
    2022 7TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND ROBOTICS RESEARCH, ICMERR, 2022, : 82 - 87
  • [3] OverlapNet: Loop Closing for LiDAR-based SLAM
    Chen, Xieyuanli
    Laebe, Thomas
    Milioto, Andres
    Roehling, Timo
    Vysotska, Olga
    Haag, Alexandre
    Behley, Jens
    Stachniss, Cyrill
    ROBOTICS: SCIENCE AND SYSTEMS XVI, 2020,
  • [4] LIDAR-based SLAM implementation using Kalman filter
    Slowak, Pawel
    Kaniewski, Piotr
    RADIOELECTRONIC SYSTEMS CONFERENCE 2019, 2020, 11442
  • [5] Lidar-based SLAM and autonomous navigation for forestry quadrotors
    Hu, Xuejun
    Wang, Meishan
    Qian, Chenghao
    Huang, Chengjie
    Xia, Yu
    Song, Ming
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [6] LiDAR-Based 3D SLAM for Indoor Mapping
    Teng Hooi Chan
    Hesse, Henrik
    Song Guang Ho
    2021 7TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTICS (ICCAR), 2021, : 285 - 289
  • [7] SuMa plus plus : Efficient LiDAR-based Semantic SLAM
    Chen, Xieyuanli
    Milioto, Andres
    Palazzolo, Emanuele
    Giguere, Philippe
    Behlcy, Jens
    Stachniss, Cyrill
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 4530 - 4537
  • [8] LiDAR-Based Object-Level SLAM for Autonomous Vehicles
    Cao, Bingyi
    Mendoza, Ricardo Carrillo
    Philipp, Andreas
    Gohring, Daniel
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4397 - 4404
  • [9] LiDAR-Based SLAM under Semantic Constraints in Dynamic Environments
    Wang, Weiqi
    You, Xiong
    Zhang, Xin
    Chen, Lingyu
    Zhang, Lantian
    Liu, Xu
    REMOTE SENSING, 2021, 13 (18)
  • [10] AN EFFICIENT DEEP UNROLLING SUPER-RESOLUTION NETWORK FOR LIDAR AUTOMOTIVE SCENES
    Gkillas, Alexandros
    Lalos, Aris S.
    Ampeliotis, Dimitris
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1840 - 1844