Human Movement Recognition Based on 3D Point Cloud Spatiotemporal Information from Millimeter-Wave Radar

被引:2
|
作者
Dang, Xiaochao [1 ]
Jin, Peng [1 ]
Hao, Zhanjun [1 ]
Ke, Wenze [1 ]
Deng, Han [1 ]
Wang, Li [1 ]
机构
[1] Northwest Normal Univ, Coll Comp Sci & Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
3D point cloud; millimeter-wave radar; human movement; neural network;
D O I
10.3390/s23239430
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Human movement recognition is the use of perceptual technology to collect some of the limb or body movements presented. This practice involves the use of wireless signals, processing, and classification to identify some of the regular movements of the human body. It has a wide range of application prospects, including in intelligent pensions, remote health monitoring, and child supervision. Among the traditional human movement recognition methods, the widely used ones are video image-based recognition technology and Wi-Fi-based recognition technology. However, in some dim and imperfect weather environments, it is not easy to maintain a high performance and recognition rate for human movement recognition using video images. There is the problem of a low recognition degree for Wi-Fi recognition of human movement in the case of a complex environment. Most of the previous research on human movement recognition is based on LiDAR perception technology. LiDAR scanning using a three-dimensional static point cloud can only present the point cloud characteristics of static objects; it struggles to reflect all the characteristics of moving objects. In addition, due to its consideration of privacy and security issues, the dynamic millimeter-wave radar point cloud used in the previous study on the existing problems of human body movement recognition performance is better, with the recognition of human movement characteristics in non-line-of-sight situations as well as better protection of people's privacy. In this paper, we propose a human motion feature recognition system (PNHM) based on spatiotemporal information of the 3D point cloud of millimeter-wave radar, design a neural network based on the network PointNet++ in order to effectively recognize human motion features, and study four human motions based on the threshold method. The data set of the four movements of the human body at two angles in two experimental environments was constructed. This paper compares four standard mainstream 3D point cloud human action recognition models for the system. The experimental results show that the recognition accuracy of the human body's when walking upright can reach 94%, the recognition accuracy when moving from squatting to standing can reach 84%, that when moving from standing to sitting can reach 87%, and the recognition accuracy of falling can reach 93%.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] 3D Point Cloud Generation with Millimeter-Wave Radar
    Qian, Kun
    He, Zhaoyuan
    Zhang, Xinyu
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2020, 4 (04):
  • [2] Human Activity Recognition Based on Point Clouds from Millimeter-Wave Radar
    Lim, Seungchan
    Park, Chaewoon
    Lee, Seongjoo
    Jung, Yunho
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [3] Dense 3D Point Cloud Environmental Mapping Using Millimeter-Wave Radar
    Zeng, Zhiyuan
    Wen, Jie
    Luo, Jianan
    Ding, Gege
    Geng, Xiongfei
    SENSORS, 2024, 24 (20)
  • [4] Activity Recognition Based on Millimeter-Wave Radar by Fusing Point Cloud and Range-Doppler Information
    Huang, Yuchen
    Li, Wei
    Dou, Zhiyang
    Zou, Wantong
    Zhang, Anye
    Li, Zan
    SIGNALS, 2022, 3 (02): : 266 - 283
  • [5] Human body recognition based on the sparse point cloud data from MIMO millimeter-wave radar for smart home
    Xiaohua Zhou
    Xinkai Meng
    Jianbin Zheng
    Gengfa Fang
    Tongjian Guo
    Multimedia Tools and Applications, 2024, 83 : 22055 - 22074
  • [6] Human body recognition based on the sparse point cloud data from MIMO millimeter-wave radar for smart home
    Zhou, Xiaohua
    Meng, Xinkai
    Zheng, Jianbin
    Fang, Gengfa
    Guo, Tongjian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (8) : 22055 - 22074
  • [7] Millimeter-Wave Radar Point Cloud Gesture Recognition Based on Multiscale Feature Extraction
    Li, Wei
    Guo, Zhiqi
    Han, Zhuangzhi
    ELECTRONICS, 2025, 14 (02):
  • [8] Multi-Person Action Recognition Based on Millimeter-Wave Radar Point Cloud
    Dang, Xiaochao
    Fan, Kai
    Li, Fenfang
    Tang, Yangyang
    Gao, Yifei
    Wang, Yue
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [9] Gait Recognition Using Spatio-Temporal Information of 3D Point Cloud via Millimeter Wave Radar
    Li, Tao
    Zhao, Zhichao
    Luo, Yi
    Ruan, Benkun
    Peng, Dawei
    Cheng, Lei
    Shi, Chenqi
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [10] An adaptive algorithm for generating 3D point clouds of the human body based on 4D millimeter-wave radar
    Huang, Xiaohong
    Zhu, Jiachen
    Tian, Ziran
    Xu, Kunqiang
    Liu, Yingchao
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (01):