Low-light is More Than Darkness: An Empirical Study on Illumination Types and Enhancement Methods

被引:0
|
作者
Liew, Hui Sze [1 ]
Loh, Yuen Peng [2 ]
Ong, Simying [1 ]
机构
[1] Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur, Malaysia
[2] Multimedia Univ, Fac Comp & Informat, Cyberjaya, Malaysia
关键词
RETINEX;
D O I
10.1109/APSIPAASC58517.2023.10317339
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-light images challenge both human perception and computer vision algorithms. Despite notable progress in this field, there are still various gaps that are yet to be investigated, such as the significance of low-light illumination characteristics towards image enhancement and object classification. Therefore, this paper details various analyses to study this phenomenon and provide insights for future developments of algorithms and solutions. Specifically, comparative analysis was done to investigate human and machine perception towards "low-light types", followed by empirical studies on the effect of illumination types towards state-of-the-art image enhancement quality and also their pre-processing capability for downstream task, namely object classification. It is found that illumination types significantly influences the performance of enhancement algorithms that tend to cater for a "general" type of low-light illumination. This lack of illumination type awareness therefore leads models to perform well in certain conditions, but severely underperforms in others. Thus, it is imperative for upcoming works to incorporate such illumination information for potential breakthroughs in this area.
引用
收藏
页码:651 / 658
页数:8
相关论文
共 50 条
  • [1] An Empirical Study on Retinex Methods for Low-Light Image Enhancement
    Rasheed, Muhammad Tahir
    Guo, Guiyu
    Shi, Daming
    Khan, Hufsa
    Cheng, Xiaochun
    REMOTE SENSING, 2022, 14 (18)
  • [2] Low-light image enhancement with a refined illumination map
    Shijie Hao
    Zhuang Feng
    Yanrong Guo
    Multimedia Tools and Applications, 2018, 77 : 29639 - 29650
  • [3] Illumination-Adaptive Unpaired Low-Light Enhancement
    Kandula, Praveen
    Suin, Maitreya
    Rajagopalan, A. N.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 3726 - 3736
  • [4] Low-light image enhancement with a refined illumination map
    Hao, Shijie
    Feng, Zhuang
    Guo, Yanrong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (22) : 29639 - 29650
  • [5] Adaptive Illumination Estimation for Low-Light Image Enhancement
    Li, Lan
    Peng, Wen-Hao
    Duan, Zhao -Peng
    Pu, Sha-Sha
    ENGINEERING LETTERS, 2024, 32 (03) : 531 - 540
  • [6] Low-light Image Enhancement via Breaking Down the Darkness
    Guo, Xiaojie
    Hu, Qiming
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (01) : 48 - 66
  • [7] Low-light Image Enhancement via Breaking Down the Darkness
    Xiaojie Guo
    Qiming Hu
    International Journal of Computer Vision, 2023, 131 : 48 - 66
  • [8] Illumination estimation for nature preserving low-light image enhancement
    Kavinder Singh
    Anil Singh Parihar
    The Visual Computer, 2024, 40 : 121 - 136
  • [9] Illumination estimation for nature preserving low-light image enhancement
    Singh, Kavinder
    Parihar, Anil Singh
    VISUAL COMPUTER, 2024, 40 (01): : 121 - 136
  • [10] Low-Light Image Enhancement with Contrast Increase and Illumination Smooth
    Leng, Hongyue
    Fang, Bin
    Zhou, Mingliang
    Wu, Bin
    Mao, Qin
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (03)