Wood Derived Flexible and Spongy Architectures for Advanced Electrochemical Energy Storage and Conversion

被引:3
|
作者
Patil, Rahul [1 ]
Mishra, Meemansha [1 ]
Liu, Shude [2 ,3 ]
Jun, Seong Chan [3 ]
Dutta, Saikat [1 ]
机构
[1] Amity Univ, Amity Inst Click Chem Res & Studies, Electrochem Energy & Sensor Res Lab, Noida 201303, India
[2] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China
[3] Yonsei Univ, Sch Mech Engn, Seoul 120749, South Korea
基金
新加坡国家研究基金会;
关键词
atom utilization efficiency; flexible and spongy architectures; natural wood; thick electrodes; electrocatalysis; OXYGEN EVOLUTION; LOW-TORTUOSITY; ELECTRODES; ELECTROCATALYSTS; OXIDE; SUPERCAPACITORS; PARAMETERS; CATALYSTS; MNO2;
D O I
10.1002/adsu.202300275
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wood-based flexible and porous architectures are currently receiving extensive attention in the development of flexible devices. The unique water adsorption properties of natural wood enable rapid and spontaneous water uptake, leading to concentration differences that facilitate the diffusion of ions with opposite charges. This article gives a summary of the differences between flexible and porous architectures made from natural wood. It also gives a detailed look at the porous architecture, which is made up of nanochannels, low-tortuosity channels, and single-atom sites to improve the electrochemical performance of supercapacitors, metal-air batteries, lithium-sulfur batteries, and lithium-oxide batteries. Moreover, the processing approaches that utilize cell wall engineering to transform flat wood sheets into adaptable 3D structures such as flexible films and foams are described. Finally, some existing challenges and future perspectives faced by wood-based flexible and spongy architectures for electrochemical energy conversion and storage are described. Focusing on their micro/nanostructure, structure engineering strategies, and electrochemical performance, this article reviews recent developments in wood and its derivatives for flexible and spongy architecture for advanced energy storage and conversions such as supercapacitors, water splitting, capacitive deionization, and rechargeable batteries.image
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Wood-Derived Materials for Advanced Electrochemical Energy Storage Devices
    Huang, Jianlin
    Zhao, Bote
    Liu, Ting
    Mou, Jirong
    Jiang, Zhongjie
    Liu, Jiang
    Li, Hexing
    Liu, Meilin
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (31)
  • [2] Advanced Materials for Electrochemical Energy Conversion and Storage
    Dang, Jingshuang
    Zhong, Ruyi
    COATINGS, 2022, 12 (07)
  • [3] Advanced catalysts with nanoscale architectures tailored for electrochemical energy conversion
    Wang, Chao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [4] Advanced materials for flexible electrochemical energy storage devices
    Linheng He
    Kechun Wen
    Zuoxiang Zhang
    Luhan Ye
    Weiqiang Lv
    Jipeng Fei
    Shangqun Zhang
    Weidong He
    Journal of Materials Research, 2018, 33 : 2281 - 2296
  • [5] Advanced materials for flexible electrochemical energy storage devices
    He, Linheng
    Wen, Kechun
    Zhang, Zuoxiang
    Ye, Luhan
    Lv, Weiqiang
    Fei, Jipeng
    Zhang, Shangqun
    He, Weidong
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (16) : 2281 - 2296
  • [6] Advanced Materials for Electrochemical Energy Conversion and Storage Devices
    Santos, Diogo M. F.
    Sljukic, Biljana
    MATERIALS, 2021, 14 (24)
  • [7] On the challenge of developing advanced technologies for electrochemical energy storage and conversion
    Yoo, Hyun Deog
    Markevich, Elena
    Salitra, Gregory
    Sharon, Daniel
    Aurbach, Doron
    MATERIALS TODAY, 2014, 17 (03) : 110 - 121
  • [8] An Overview of Flexible Electrode Materials/Substrates for Flexible Electrochemical Energy Storage/Conversion Devices
    Shang, Kezheng
    Gao, Jiyuan
    Yin, Ximeng
    Ding, Yichun
    Wen, Zhenhai
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2021, 2021 (07) : 606 - 619
  • [9] ELECTROCHEMICAL ENERGY - CONVERSION AND STORAGE
    不详
    CHIMIA, 1981, 35 (12) : 502 - 503
  • [10] ELECTROCHEMICAL CONVERSION AND STORAGE OF ENERGY
    POHL, J
    UMSCHAU, 1986, 86 (11): : 558 - 564