Understanding interaction mechanism between 8-MnO2 and Li2O2 in nonaqueous lithium-oxygen batteries

被引:2
|
作者
Wang, Yanning [1 ,2 ]
Sun, Xianda [3 ]
Li, Yinshi [2 ]
机构
[1] Beijing Aerosp Technol Res Inst, Beijing 100074, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
[3] Shandong Univ, Inst Adv Sci & Technol, Jinan 250061, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonaqueous lithium-oxygen battery; DFT calculation; 8-MnO2; Oxygen evolution reaction; N-DOPED GRAPHENE; EVOLUTION REACTION; REDUCTION REACTION; CATALYTIC-ACTIVITY; LI-O-2; CATHODE; RUO2; EFFICIENT; MNO2; NITROGEN;
D O I
10.1016/j.electacta.2023.142516
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Focusing on the 8-MnO2 acting as catalysts in oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes of the cathode in nonaqueous lithium-oxygen battery, the adsorption models of key in-termediates LixOy on the 8-MnO2 surface and the interface model of 8-MnO2 and Li2O2 crystals are established based on density functional theory (DFT) calculations. In terms to the energy change, the 8-MnO2 shows appropriate adsorption energy to the Li2O2 molecule and crystal, benefiting to the proceeding of ORR and OER processes. As for the electron distribution, the 8-MnO2 is an indirect band gap semi-conductor, the semi -conductive characteristic is preserved after the LixOy adsorption, going against the initial Li2O2 nucleation. During the OER process, the three-phase interface of 8-MnO2/Li2O2/O2 proves to be electronic conductive, guaranteeing the capability of combination between electrons and lithium ions. To further optimize the elec-tronic conductivity of 8-MnO2, the 8-MnO2 doped with Li element, which proves to be a stable structure, is proposed to enhance the catalytic activity.
引用
收藏
页数:10
相关论文
empty
未找到相关数据