Paragraph-antibody paratope prediction using graph neural networks with minimal feature vectors

被引:13
|
作者
Chinery, Lewis [1 ]
Wahome, Newton [2 ]
Moal, Iain [3 ]
Deane, Charlotte M. [1 ]
机构
[1] Univ Oxford, Dept Stat, Oxford OX1 3LB, England
[2] GSK Vaccines, Rockville, MD 20850 USA
[3] GlaxoSmithKline Res & Dev Ltd, Stevenage SG1 2NY, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1093/bioinformatics/btac732
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The development of new vaccines and antibody therapeutics typically takes several years and requires over $1bn in investment. Accurate knowledge of the paratope (antibody binding site) can speed up and reduce the cost of this process by improving our understanding of antibody-antigen binding. We present Paragraph, a structure-based paratope prediction tool that outperforms current state-of-the-art tools using simpler feature vectors and no antigen information.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Parapred: antibody paratope prediction using convolutional and recurrent neural networks
    Liberis, Edgar
    Velickovic, Petar
    Sormanni, Pietro
    Vendruscolo, Michele
    Lio, Pietro
    BIOINFORMATICS, 2018, 34 (17) : 2944 - 2950
  • [2] ParaGraph: Layout Parasitics and Device Parameter Prediction using Graph Neural Networks
    Ren, Haoxing
    Kokai, George F.
    Turner, Walker J.
    Ku, Ting-Sheng
    PROCEEDINGS OF THE 2020 57TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2020,
  • [3] Prediction of Paratope-Epitope Pairs Using Convolutional Neural Networks
    Li, Dong
    Pucci, Fabrizio
    Rooman, Marianne
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [4] Nucleophilicity Prediction Using Graph Neural Networks
    Nie, Wan
    Liu, Deguang
    Li, Shuaicheng
    Yu, Haizhu
    Fu, Yao
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (18) : 4319 - 4328
  • [5] Footfall Prediction Using Graph Neural Networks
    Boz, Hasan Alp
    Bahrami, Mohsen
    Balcisoy, Selim
    Pentland, Alex
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [6] Improving materials property predictions for graph neural networks with minimal feature engineering 
    Cong, Guojing
    Fung, Victor
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (03):
  • [7] Science Graph for characterizing the recent scientific landscape using Paragraph Vectors
    Kawamura, Takahiro
    Watanabe, Katsutaro
    Matsumoto, Naoya
    Egami, Shusaku
    Jibu, Mari
    K-CAP 2017: PROCEEDINGS OF THE KNOWLEDGE CAPTURE CONFERENCE, 2017,
  • [8] Bitter peptide prediction using graph neural networks
    Srivastava, Prashant
    Steuer, Alexandra
    Ferri, Francesco
    Nicoli, Alessandro
    Schultz, Kristian
    Bej, Saptarshi
    Di Pizio, Antonella
    Wolkenhauer, Olaf
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01):
  • [9] CELL MEMBRANE FEATURE DETECTION USING GRAPH NEURAL NETWORKS
    Offord, Edward
    Lutton, Judith E.
    Bretschneider, Till
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [10] Prediction of drug-drug interaction events using graph neural networks based feature extraction
    Al-Rabeah, Mohammad Hussain
    Lakizadeh, Amir
    SCIENTIFIC REPORTS, 2022, 12 (01)