Non-periodically intermittent exponential synchronization of fractional-order multi-links complex dynamical networks

被引:0
|
作者
Xu, Yao [1 ]
Jia, Qilong [1 ]
Li, Wenxue [1 ]
Feng, Jiqiang [2 ]
机构
[1] Harbin Inst Technol Weihai, Dept Math, Weihai, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen Inst Comp Sci, Shenzhen, Peoples R China
基金
美国国家科学基金会;
关键词
Fractional-order; complex dynamical networks; exponential synchronization; non-periodically intermittent control; STABILIZATION; SYSTEMS;
D O I
10.1080/00036811.2021.1971200
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the exponential synchronization of fractional-order multi-links complex dynamical networks (CDNs) is studied based on non-periodically intermittent control. By means of the Lyapunov method and graph-theoretic approach, a Lyapunov-type theorem is provided based on the existence of vertex-Lyapunov functions. Then by giving the specific vertex-Lyapunov functions, a coefficients-type theorem is presented where the conditions of it are based on the coefficients of system. Moreover, to show the practicality of theoretical results, we give two applications to fractional-order chaotic CDNs with multiple links and fractional-order Hindmarsh-Rose neuron systems with multiple links, respectively. Meanwhile, two numerical examples are given to demonstrate the validity and feasibility of the theoretical results.
引用
收藏
页码:1077 / 1099
页数:23
相关论文
共 50 条
  • [1] Exponential Stability of Fractional-Order Complex Multi-Links Networks With Aperiodically Intermittent Control
    Xu, Yao
    Gao, Shang
    Li, Wenxue
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (09) : 4063 - 4074
  • [2] Exponential synchronisation of united complex dynamical networks with multi-links via adaptive periodically intermittent control
    Li, Ning
    Sun, Haiyi
    Jing, Xin
    Zhang, Qingling
    IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (13): : 1725 - 1736
  • [3] Synchronization of fractional-order complex dynamical networks via periodically intermittent pinning control
    Li, Hong-Li
    Hu, Cheng
    Jiang, Haijun
    Teng, Zhidong
    Jiang, Yao-Lin
    CHAOS SOLITONS & FRACTALS, 2017, 103 : 357 - 363
  • [4] Exponential synchronization of fractional-order T-S fuzzy complex multi-links networks with intermittent dynamic event-triggered control
    Liu, Xin
    Chen, Lili
    Zhao, Yanfeng
    Wang, Zhen
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 140
  • [5] Intermittent event-triggered control for exponential synchronization of multi-links complex networks
    Zhang H.-L.
    Qi W.-B.
    Guo Y.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2024, 41 (01): : 90 - 98
  • [6] SYNCHRONIZATION CONTROL OF UNITED COMPLEX DYNAMICAL NETWORKS WITH MULTI-LINKS
    Sun, Haiyi
    Zhang, Qingling
    Li, Ning
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2011, 7 (02): : 927 - 939
  • [7] Finite-time synchronization of complex dynamical networks with multi-links via intermittent controls
    Zheng, Mingwen
    Li, Lixiang
    Peng, Haipeng
    Xiao, Jinghua
    Yang, Yixian
    Zhao, Hui
    Ren, Jingfeng
    EUROPEAN PHYSICAL JOURNAL B, 2016, 89 (02): : 1 - 12
  • [8] Finite-time synchronization of complex dynamical networks with multi-links via intermittent controls
    Mingwen Zheng
    Lixiang Li
    Haipeng Peng
    Jinghua Xiao
    Yixian Yang
    Hui Zhao
    Jingfeng Ren
    The European Physical Journal B, 2016, 89
  • [9] Exponential quasi-synchronization of conformable fractional-order complex dynamical networks
    Chu, Xiaoyan
    Xu, Liguang
    Hu, Hongxiao
    CHAOS SOLITONS & FRACTALS, 2020, 140
  • [10] Synchronization of delayed dynamical networks with multi-links via intermittent pinning control
    Mwanandiye, Eric S.
    Wu, Bo
    Jia, Qiang
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (15): : 11277 - 11284