Sharp L1-approximation of the log-Heston stochastic differential equation by Euler-type methods

被引:3
|
作者
Mickel, Annalena
Neuenkirch, Andreas [1 ]
机构
[1] Univ Mannheim, Math Inst, D-68159 Mannheim, Germany
关键词
Cox-Ingersoll-Ross (CIR) process; Heston model; Euler-type methods; L-1-error; Feller index; INGERSOLL-ROSS PROCESSES; STRONG APPROXIMATION; DISCRETIZATION SCHEMES; STRONG-CONVERGENCE; SCALAR SDES; VOLATILITY; SIMULATION; ERROR; RATES; CIR;
D O I
10.21314/JCF.2023.002
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We study the L-1-approximation of the log-Heston stochastic differential equation at equidistant time points by Euler-type methods. We establish the convergence order 1/2 is an element of for is an element of > 0 arbitrarily small if the Feller index nu of the underlying Cox-Ingersoll-Ross process satisfies nu > 1. Thus, we recover the standard convergence order of the Euler scheme for stochastic differential equations with globally Lipschitz coefficients. Moreover, we discuss the nu <= 1 case and illustrate our findings with several numerical examples.
引用
收藏
页码:67 / 100
页数:34
相关论文
共 6 条