Deep learning enhanced noise spectroscopy of a spin qubit environment

被引:6
|
作者
Martina, Stefano [1 ,2 ]
Hernandez-Gomez, Santiago [2 ,3 ]
Gherardini, Stefano [2 ,4 ]
Caruso, Filippo [1 ,2 ,5 ]
Fabbri, Nicole [2 ,5 ]
机构
[1] Univ Firenze, Dipartimento Fis & Astron, I-50019 Sesto Fiorentino, Italy
[2] Univ Firenze, European Lab Nonlinear Spect LENS, I-50019 Sesto Fiorentino, Italy
[3] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[4] Consiglio Nazl Ric CNR INO, Ist Nazl Ott, Area Sci Pk, I-34149 Trieste, Italy
[5] Consiglio Nazl Ric CNR INO, Ist Nazl Ott, I-50019 Sesto Fiorentino, Italy
来源
基金
欧盟地平线“2020”;
关键词
deep learning; neural networks; machine learning; quantum machine learning; quantum noise; quantum sensing; quantum noise spectroscopy; DECOHERENCE;
D O I
10.1088/2632-2153/acd2a6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The undesired interaction of a quantum system with its environment generally leads to a coherence decay of superposition states in time. A precise knowledge of the spectral content of the noise induced by the environment is crucial to protect qubit coherence and optimize its employment in quantum device applications. We experimentally show that the use of neural networks (NNs) can highly increase the accuracy of noise spectroscopy, by reconstructing the power spectral density that characterizes an ensemble of carbon impurities around a nitrogen-vacancy (NV) center in diamond. NNs are trained over spin coherence functions of the NV center subjected to different Carr-Purcell sequences, typically used for dynamical decoupling (DD). As a result, we determine that deep learning models can be more accurate than standard DD noise-spectroscopy techniques, by requiring at the same time a much smaller number of DD sequences.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Using Deep Learning to Understand and Mitigate the Qubit Noise Environment
    Wise, David F.
    Morton, John J. L.
    Dhomkar, Siddharth
    PRX QUANTUM, 2021, 2 (01):
  • [2] Assessment of a Silicon Quantum Dot Spin Qubit Environment via Noise Spectroscopy
    Chan, K. W.
    Huang, W.
    Yang, C. H.
    Hwang, J. C. C.
    Hensen, B.
    Tanttu, T.
    Hudson, F. E.
    Itoh, K. M.
    Laucht, A.
    Morello, A.
    Dzurak, A. S.
    PHYSICAL REVIEW APPLIED, 2018, 10 (04):
  • [3] Spin-qubit noise spectroscopy from randomized benchmarking by supervised learning
    Zhang, Chengxian
    Wang, Xin
    PHYSICAL REVIEW A, 2019, 99 (04)
  • [4] Noise spectroscopy of a quantum-classical environment with a diamond qubit
    Hernandez-Gomez, S.
    Poggiali, F.
    Cappellaro, P.
    Fabbri, N.
    PHYSICAL REVIEW B, 2018, 98 (21)
  • [5] Molecular-Spin-Qubit Noise Spectroscopy Through Dynamical Decoupling
    Fu, Yue
    Wu, Yang
    Dai, Yingqiu
    Qin, Xi
    Rong, Xing
    Du, Jiangfeng
    PHYSICAL REVIEW APPLIED, 2021, 15 (06)
  • [6] Deep Reinforcement Learning Strategies for Noise-Adaptive Qubit Routing
    Pascoal, Goncalo
    Fernandes, Joao Paulo
    Abreu, Rui
    2024 IEEE INTERNATIONAL CONFERENCE ON QUANTUM SOFTWARE, IEEE QSW 2024, 2024, : 146 - 156
  • [7] A spin qubit hiding from the noise
    Hendrickx, Nico W.
    Fuhrer, Andreas
    NATURE NANOTECHNOLOGY, 2022, 17 (10) : 1040 - 1041
  • [8] A spin qubit hiding from the noise
    Nico W. Hendrickx
    Andreas Fuhrer
    Nature Nanotechnology, 2022, 17 : 1040 - 1041
  • [9] Noise Prediction and Reduction of Single Electron Spin by Deep-Learning-Enhanced Feedforward Control
    Xu, Nanyang
    Zhou, Feifei
    Ye, Xiangyu
    Lin, Xue
    Chen, Bao
    Zhang, Ting
    Yue, Feng
    Chen, Bing
    Wang, Ya
    Du, Jiangfeng
    NANO LETTERS, 2023, 23 (07) : 2460 - 2466
  • [10] Noise to lubricate qubit transfer in a spin network
    Rafiee, Morteza
    Lupo, Cosmo
    Mancini, Stefano
    PHYSICAL REVIEW A, 2013, 88 (03):