Thermal degradation of coconut husk waste biomass under non-isothermal condition

被引:24
|
作者
Pawar, Ashish [1 ]
Panwar, N. L. [1 ]
Jain, Sudhir [1 ]
Jain, N. K. [2 ]
Gupta, Trilok [3 ]
机构
[1] Maharana Pratap Univ Agr & Technol, Coll Technol & Engn, Dept Renewable Energy Engn, Udaipur 313001, Rajasthan, India
[2] Maharana Pratap Univ Agr & Technol, Coll Technol & Engn, Dept Proc & Food Engn, Udaipur 313001, Rajasthan, India
[3] Maharana Pratap Univ Agr & Technol, Coll Technol & Engn, Dept Civil Engn, Udaipur 313001, Rajasthan, India
关键词
Coconut husk waste biomass; Kinetic analysis; TG; DTG analysis; Iso-conversional models; Reaction mechanism; Thermodynamic parameters; Pyrolysis; KINETIC-PARAMETERS; PYROLYSIS CHARACTERISTICS; ACTIVATION-ENERGY; SHELL; DECOMPOSITION; BIOCHAR; MANURE; FIBER; MODEL;
D O I
10.1007/s13399-021-01657-w
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Non-isothermal thermogravimetric analysis of coconut husk waste (CHW) biomass was conducted at 10, 20, and 30 degrees C/min in inert atmospheric conditions. The physicochemical characterization in terms of proximate, ultimate analysis, and lignocellulosic composition of CHW was done by using different analytical techniques. The characterization revealed that CHW contains higher volatile matter (67.8 wt.%), lower ash and moisture content while significantly higher HHV (17 MJ/kg). The kinetics and thermodynamic parameters were calculated using iso-conversional model-free methods, including Kissinger-Akahira-Sunose (KAS), Starink, and Flynn-Wall-Ozawa (FWO), respectively. The calculated average activation energy values for CHW were found to be 232.17, 230.38, and 229.87 kJ/mol for FWO, KAS, and Starink models, respectively. The thermodynamic parameters such as enthalpy, entropy, and Gibbs free energy for CHW were calculated using iso-conversional methods. The kinetic analysis and thermal degradation study disclosed that the CHW biomass can effectively be used in sustainable biofuel production.
引用
收藏
页码:7613 / 7622
页数:10
相关论文
共 50 条
  • [1] Thermal degradation of coconut husk waste biomass under non-isothermal condition
    Ashish Pawar
    N. L. Panwar
    Sudhir Jain
    N. K. Jain
    Trilok Gupta
    Biomass Conversion and Biorefinery, 2023, 13 : 7613 - 7622
  • [2] Thermal Degradation of Polychloroprene Rubber Under Isothermal and Non-Isothermal Conditions
    P. Budrugeac
    E. Segal
    Journal of Thermal Analysis and Calorimetry, 1998, 53 : 441 - 447
  • [3] Thermal degradation of polychloroprene rubber under isothermal and non-isothermal conditions
    Budrugeac, P
    Segal, E
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 1998, 53 (02): : 441 - 447
  • [4] Non-isothermal kinetics of thermal degradation of chitin
    Georgieva, Velyana
    Zvezdova, Dilyana
    Vlaev, Lyubomir
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2013, 111 (01) : 763 - 771
  • [5] Non-isothermal kinetics of thermal degradation of chitin
    Velyana Georgieva
    Dilyana Zvezdova
    Lyubomir Vlaev
    Journal of Thermal Analysis and Calorimetry, 2013, 111 : 763 - 771
  • [6] Non-isothermal kinetics of thermal degradation of chitosan
    Velyana Georgieva
    Dilyana Zvezdova
    Lyubomir Vlaev
    Chemistry Central Journal, 6
  • [7] Non-isothermal kinetics of thermal degradation of chitosan
    Georgieva, Velyana
    Zvezdova, Dilyana
    Vlaev, Lyubomir
    CHEMISTRY CENTRAL JOURNAL, 2012, 6
  • [8] Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal condition
    Maitra, S
    Choudhury, A
    Das, HS
    Pramanik, MJ
    JOURNAL OF MATERIALS SCIENCE, 2005, 40 (18) : 4749 - 4751
  • [9] Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal condition
    S. Maitra
    A. Choudhury
    H. S. Das
    Ms. J. Pramanik
    Journal of Materials Science, 2005, 40 : 4749 - 4751
  • [10] Pyrolysis characteristics and non-isothermal kinetics of waste wood biomass
    Li, Jingjing
    Dou, Binlin
    Zhang, Hua
    Zhang, Hao
    Chen, Haisheng
    Xu, Yujie
    Wu, Chunfei
    ENERGY, 2021, 226