SEMANTIC SEGMENTATION OF REMOTE SENSING IMAGERY USING AN ENHANCED ENCODER-DECODER ARCHITECTURE

被引:0
|
作者
Aburaed, N. [1 ,2 ]
Al-Saad, M. [1 ]
Alkhatib, M. Q. [1 ]
Zitouni, M. S. [1 ]
Almansoori, S. [3 ]
Al-Ahmad, H. [1 ]
机构
[1] Univ Dubai, Coll Engn & IT, Dubai, U Arab Emirates
[2] Univ Strathclyde, Dept Elect & Elect Engn, Glasgow, Scotland
[3] Mohammed Bin Rashid Space Ctr, Dubai, U Arab Emirates
关键词
Deep Learning; Semantic Segmentation; RUNET; UNET; Remote Sensing; Squeeze and Excitation; CLASSIFICATION;
D O I
10.5194/isprs-annals-X-1-W1-2023-1015-2023
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
Semantic segmentation is one of most the important computer vision tasks for the analysis of aerial imagery in many remote sensing applications, such as resource surveys, disaster detection, and urban planning. This area of research still faces unsolved challenges, especially in cluttered environments and complex sceneries. This study presents a repurposed Robust UNet (RUNet) architecture for semantic segmentation, and embeds the architecture with attention mechanism in order to enhance feature extraction and construction of segmentation maps. The attention mechanism is achieved using Squeeze-and-Excitation (SE) block. The resulting network is referred to as SE-RUNet. SE is also tested with the classical UNet, termed SE-UNet, to verify the efficiency of introducing SE. The proposed approach is trained and tested using "Semantic Segmentation of Aerial Imagery" dataset. The results are evaluated using Accuracy, Precision, Recall, F-score and mean Intersection over Union (mIoU) metrics. Comparative evaluation and experimental results show that using SE to embed attention mechanism into UNet and RUNet significantly improves the overall performance.
引用
收藏
页码:1015 / 1020
页数:6
相关论文
共 50 条
  • [1] Semantic Segmentation of Remote Sensing Image Based on Encoder-Decoder Convolutional Neural Network
    Zhang Zhehan
    Fang Wei
    Du Lili
    Qiao Yanli
    Zhang Dongying
    Ding Guoshen
    ACTA OPTICA SINICA, 2020, 40 (03)
  • [2] An Encoder-Decoder Network Based FCN Architecture for Semantic Segmentation
    Xing, Yongfeng
    Zhong, Luo
    Zhong, Xian
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2020, 2020
  • [3] SISR of Hyperspectral Remote Sensing Imagery Using 3D Encoder-Decoder RUNet Architecture
    Aburaed, Nour
    Alkhatib, Mohammed Q.
    Marshall, Stephen
    Zabalza, Jaime
    Al Ahmad, Hussain
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1516 - 1519
  • [4] A serial semantic segmentation model based on encoder-decoder architecture
    Zhou, Yan
    KNOWLEDGE-BASED SYSTEMS, 2024, 295
  • [5] Semantic Segmentation of Remote Sensing Image Based on Multi-Scale Semantic Encoder-Decoder Network
    Liang Y.
    Yi C.-X.
    Wang G.-Y.
    Hu Y.-H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (11): : 3199 - 3214
  • [6] Semantic road segmentation using encoder-decoder architectures
    Latsaheb B.
    Sharma S.
    Hasija S.
    Multimedia Tools and Applications, 2025, 84 (9) : 5961 - 5983
  • [7] A Semantic Segmentation Method for High-resolution Remote Sensing Images Based on Encoder-Decoder
    Yang, Jingyu
    Zhao, Liang
    Dang, Jianwu
    Wang, Yangping
    Yue, Biao
    Gu, Zongliang
    2022 TENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, CBD, 2022, : 98 - 103
  • [8] Residual quadratic encoder-decoder architecture for semantic segmentation of satellite images
    Bagwari, Neha
    Verma, Vivek Singh
    Kumar, Sushil
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [9] Semantic segmentation method of underwater images based on encoder-decoder architecture
    Wang, Jinkang
    He, Xiaohui
    Shao, Faming
    Lu, Guanlin
    Hu, Ruizhe
    Jiang, Qunyan
    PLOS ONE, 2022, 17 (08):
  • [10] Semantic segmentation of retinal exudates using a residual encoder-decoder architecture in diabetic retinopathy
    Manan, Malik Abdul
    Jinchao, Feng
    Khan, Tariq M. M.
    Yaqub, Muhammad
    Ahmed, Shahzad
    Chuhan, Imran Shabir
    MICROSCOPY RESEARCH AND TECHNIQUE, 2023, 86 (11) : 1443 - 1460