PETNet: A YOLO-based prior enhanced transformer network for aerial image detection

被引:13
|
作者
Wang, Tianyu [1 ]
Ma, Zhongjing [1 ]
Yang, Tao [1 ]
Zou, Suli [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Transformer; Small object detection; Aerial image; OBJECT DETECTION; UAV;
D O I
10.1016/j.neucom.2023.126384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unmanned aerial vehicles (UAVs) have been applied to inspect in various scenarios due to their high effi-ciency, low cost, and excellent mobility. However, the objects in aerial images are much smaller and den-ser than general objects, causing it difficult for current object detection methods to achieve the expected results. To solve this issue, a prior enhanced Transformer network (PETNet) based on YOLO is proposed in this paper. Specifically, a novel prior enhanced Transformer (PET) module and a one-to-many feature fusion (OMFF) mechanism are proposed to embed into the network. Two additional detection heads are added to the shallow feature maps. In this work, PET is used to capture enhanced global information to improve the expressive ability of the network. The OMFF aims to fuse multi-type features to minimize the information loss of small objects. In addition, the added detection heads provide more possibility of detecting smaller-scale objects, and the extended multi-head parallel detection is more suitable for the multi-scale transformation of objects in aerial images. On the VisDrone-2021 and UAVDT databases, the proposed PETNet achieves state-of-the-art results with average precision (AP) of 35.3 and 21.5, respectively, which indicates that the proposed network is more suitable for aerial image detection and is of a great reference value.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] YOLO-based Detection Technology for Aerial Infrared Targets
    Qiu, Wei
    Wang, Kaidi
    Li, Shaoyi
    Zhang, Kai
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 1115 - 1119
  • [2] NATCA YOLO-Based Small Object Detection for Aerial Images
    Zhu, Yicheng
    Ai, Zhenhua
    Yan, Jinqiang
    Li, Silong
    Yang, Guowei
    Yu, Teng
    INFORMATION, 2024, 15 (07)
  • [3] YOLO-Based Models for Smoke and Wildfire Detection in Ground and Aerial Images
    Goncalves, Leon Augusto Okida
    Ghali, Rafik
    Akhloufi, Moulay A.
    FIRE-SWITZERLAND, 2024, 7 (04):
  • [4] CEH-YOLO: A composite enhanced YOLO-based model for underwater object detection
    Feng, Jiangfan
    Jin, Tao
    ECOLOGICAL INFORMATICS, 2024, 82
  • [5] SenseLite: A YOLO-Based Lightweight Model for Small Object Detection in Aerial Imagery
    Han, Tianxin
    Dong, Qing
    Sun, Lina
    SENSORS, 2023, 23 (19)
  • [6] A YOLO-Based Target Detection Model for Offshore Unmanned Aerial Vehicle Data
    Wang, Zhenhua
    Zhang, Xinyue
    Li, Jing
    Luan, Kuifeng
    SUSTAINABILITY, 2021, 13 (23)
  • [7] YOLO-based Panoptic Segmentation Network
    Diaz-Zapata, Manuel
    Erkent, Ozgur
    Laugier, Christian
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 1230 - 1234
  • [8] YOLO-Based Efficient Vehicle Object Detection
    Liu, Ting-Na
    Zhu, Zhong-Jie
    Bai, Yong-Qiang
    Liao, Guang-Long
    Chen, Yin-Xue
    Journal of Computers (Taiwan), 2022, 33 (04): : 69 - 79
  • [9] Yolo-Based Improvements in Remote Sensing Image Applications
    Zhang, Yiming
    Li, Xiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [10] YOLO-based microglia activation state detection
    Liu, Jichi
    Li, Wei
    Lyu, Houkun
    Qi, Feng
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16): : 24413 - 24434